↓ Skip to main content

Specific Physical Exercise Improves Energetic Metabolism in the Skeletal Muscle of Amyotrophic-Lateral- Sclerosis Mice

Overview of attention for article published in Frontiers in Molecular Neuroscience, October 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
68 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Specific Physical Exercise Improves Energetic Metabolism in the Skeletal Muscle of Amyotrophic-Lateral- Sclerosis Mice
Published in
Frontiers in Molecular Neuroscience, October 2017
DOI 10.3389/fnmol.2017.00332
Pubmed ID
Authors

Céline Desseille, Séverine Deforges, Olivier Biondi, Léo Houdebine, Domenico D’amico, Antonin Lamazière, Cédric Caradeuc, Gildas Bertho, Gaëlle Bruneteau, Laure Weill, Jean Bastin, Fatima Djouadi, François Salachas, Philippe Lopes, Christophe Chanoine, Charbel Massaad, Frédéric Charbonnier

Abstract

Amyotrophic Lateral Sclerosis is an adult-onset neurodegenerative disease characterized by the specific loss of motor neurons, leading to muscle paralysis and death. Although the cellular mechanisms underlying amyotrophic lateral sclerosis (ALS)-induced toxicity for motor neurons remain poorly understood, growing evidence suggest a defective energetic metabolism in skeletal muscles participating in ALS-induced motor neuron death ultimately destabilizing neuromuscular junctions. In the present study, we report that a specific exercise paradigm, based on a high intensity and amplitude swimming exercise, significantly improves glucose metabolism in ALS mice. Using physiological tests and a biophysics approach based on nuclear magnetic resonance (NMR), we unexpectedly found that SOD1(G93A) ALS mice suffered from severe glucose intolerance, which was counteracted by high intensity swimming but not moderate intensity running exercise. Furthermore, swimming exercise restored the highly ALS-sensitive tibialis muscle through an autophagy-linked mechanism involving the expression of key glucose transporters and metabolic enzymes, including GLUT4 and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Importantly, GLUT4 and GAPDH expression defects were also found in muscles from ALS patients. Moreover, we report that swimming exercise induced a triglyceride accumulation in ALS tibialis, likely resulting from an increase in the expression levels of lipid transporters and biosynthesis enzymes, notably DGAT1 and related proteins. All these data provide the first molecular basis for the differential effects of specific exercise type and intensity in ALS, calling for the use of physical exercise as an appropriate intervention to alleviate symptoms in this debilitating disease.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 68 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 68 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 15 22%
Student > Ph. D. Student 9 13%
Student > Master 8 12%
Researcher 6 9%
Professor > Associate Professor 5 7%
Other 5 7%
Unknown 20 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 10%
Agricultural and Biological Sciences 7 10%
Nursing and Health Professions 6 9%
Sports and Recreations 6 9%
Neuroscience 6 9%
Other 11 16%
Unknown 25 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 November 2017.
All research outputs
#18,575,277
of 23,007,053 outputs
Outputs from Frontiers in Molecular Neuroscience
#2,285
of 2,908 outputs
Outputs of similar age
#251,821
of 328,584 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#91
of 118 outputs
Altmetric has tracked 23,007,053 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,908 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 14th percentile – i.e., 14% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,584 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 118 others from the same source and published within six weeks on either side of this one. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.