↓ Skip to main content

Selection and Characterization of Palmitic Acid Responsive Patients with an OXPHOS Complex I Defect

Overview of attention for article published in Frontiers in Molecular Neuroscience, October 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Selection and Characterization of Palmitic Acid Responsive Patients with an OXPHOS Complex I Defect
Published in
Frontiers in Molecular Neuroscience, October 2017
DOI 10.3389/fnmol.2017.00336
Pubmed ID
Authors

Tom E. J. Theunissen, Mike Gerards, Debby M. E. I. Hellebrekers, Florence H. van Tienen, Rick Kamps, Suzanne C. E. H. Sallevelt, Elvira N. M. M.-D. Hartog, Hans R. Scholte, Robert M. Verdijk, Kees Schoonderwoerd, Irenaeus F. M. de Coo, Radek Szklarczyk, Hubert J. M. Smeets

Abstract

Mitochondrial disorders are genetically and clinically heterogeneous, mainly affecting high energy-demanding organs due to impaired oxidative phosphorylation (OXPHOS). Currently, effective treatments for OXPHOS defects, with complex I deficiency being the most prevalent, are not available. Yet, clinical practice has shown that some complex I deficient patients benefit from a high-fat or ketogenic diet, but it is unclear how these therapeutic diets influence mitochondrial function and more importantly, which complex I patients could benefit from such treatment. Dietary studies in a complex I deficient patient with exercise intolerance showed increased muscle endurance on a high-fat diet compared to a high-carbohydrate diet. We performed whole-exome sequencing to characterize the genetic defect. A pathogenic homozygous p.G212V missense mutation was identified in the TMEM126B gene, encoding an early assembly factor of complex I. A complementation study in fibroblasts confirmed that the p.G212V mutation caused the complex I deficiency. The mechanism turned out to be an incomplete assembly of the peripheral arm of complex I, leading to a decrease in the amount of mature complex I. The patient clinically improved on a high-fat diet, which was supported by the 25% increase in maximal OXPHOS capacity in TMEM126B defective fibroblast by the saturated fatty acid palmitic acid, whereas oleic acid did not have any effect in those fibroblasts. Fibroblasts of other patients with a characterized complex I gene defect were tested in the same way. Patient fibroblasts with complex I defects in NDUFS7 and NDUFAF5 responded to palmitic acid, whereas ACAD9, NDUFA12, and NDUFV2 defects were non-responding. Although the data are too limited to draw a definite conclusion on the mechanism, there is a tendency that protein defects involved in early assembly complexes, improve with palmitic acid, whereas proteins defects involved in late assembly, do not. Our data show at a clinical and biochemical level that a high fat diet can be beneficial for complex I patients and that our cell line assay will be an easy tool for the selection of patients, who might potentially benefit from this therapeutic diet.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 17%
Researcher 4 17%
Student > Bachelor 2 8%
Student > Postgraduate 2 8%
Professor > Associate Professor 2 8%
Other 5 21%
Unknown 5 21%
Readers by discipline Count As %
Medicine and Dentistry 4 17%
Neuroscience 3 13%
Biochemistry, Genetics and Molecular Biology 2 8%
Nursing and Health Professions 2 8%
Agricultural and Biological Sciences 1 4%
Other 3 13%
Unknown 9 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 October 2017.
All research outputs
#20,450,513
of 23,006,268 outputs
Outputs from Frontiers in Molecular Neuroscience
#2,492
of 2,908 outputs
Outputs of similar age
#285,186
of 327,018 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#99
of 117 outputs
Altmetric has tracked 23,006,268 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,908 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,018 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 117 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.