↓ Skip to main content

Direct Neuronal Glucose Uptake Is Required for Contextual Fear Acquisition in the Dorsal Hippocampus

Overview of attention for article published in Frontiers in Molecular Neuroscience, November 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (55th percentile)
  • Good Attention Score compared to outputs of the same age and source (73rd percentile)

Mentioned by

twitter
5 X users

Readers on

mendeley
38 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Direct Neuronal Glucose Uptake Is Required for Contextual Fear Acquisition in the Dorsal Hippocampus
Published in
Frontiers in Molecular Neuroscience, November 2017
DOI 10.3389/fnmol.2017.00388
Pubmed ID
Authors

Liang Kong, Yan Zhao, Wen-Juan Zhou, Hui Yu, Shuai-Wen Teng, Qi Guo, Zheyu Chen, Yue Wang

Abstract

The metabolism of glucose is a nearly exclusive source of energy for maintaining neuronal survival, synaptic transmission and information processing in the brain. Two glucose metabolism pathways have been reported, direct neuronal glucose uptake and the astrocyte-neuron lactate shuttle (ANLS), which can be involved in these functions simultaneously or separately. Although ANLS in the dorsal hippocampus (DH) has been proved to be required for memory consolidation, the specific metabolic pathway involved during memory acquisition remains unclear. The DH and amygdala are two key brain regions for acquisition of contextual fear conditioning (CFC). In 2-NBDG experiments, we observed that 2-NBDG-positive neurons were significantly increased during the acquisition of CFC in the DH. However, in the amygdala and cerebellum, 2-NBDG-positive neurons were not changed during CFC training. Strikingly, microinjection of a glucose transporter (GLUT) inhibitor into the DH decreased freezing values during CFC training and 1 h later, while injection of a monocarboxylate transporter (MCT) inhibitor into the amygdala also reduced freezing values. Therefore, we demonstrated that direct neuronal glucose uptake was the primary means of energy supply in the DH, while ANLS might supply energy in the amygdala during acquisition. Furthermore, knockdown of GLUT3 by a lentivirus in the DH impaired the acquisition of CFC. Taken together, the results indicated that there were two different glucose metabolism pathways in the DH and amygdala during acquisition of contextual fear memory and that direct neuronal glucose uptake in the DH may be regulated by GLUT3.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 38 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 24%
Student > Bachelor 8 21%
Researcher 5 13%
Professor 4 11%
Student > Master 2 5%
Other 2 5%
Unknown 8 21%
Readers by discipline Count As %
Neuroscience 17 45%
Biochemistry, Genetics and Molecular Biology 3 8%
Medicine and Dentistry 3 8%
Chemistry 2 5%
Sports and Recreations 1 3%
Other 3 8%
Unknown 9 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 December 2017.
All research outputs
#12,743,375
of 23,009,818 outputs
Outputs from Frontiers in Molecular Neuroscience
#1,088
of 2,910 outputs
Outputs of similar age
#194,379
of 437,742 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#31
of 116 outputs
Altmetric has tracked 23,009,818 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,910 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one has gotten more attention than average, scoring higher than 62% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 437,742 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.
We're also able to compare this research output to 116 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.