↓ Skip to main content

Indirubin Derivative 7-Bromoindirubin-3-Oxime (7Bio) Attenuates Aβ Oligomer-Induced Cognitive Impairments in Mice

Overview of attention for article published in Frontiers in Molecular Neuroscience, November 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (61st percentile)

Mentioned by

twitter
4 X users

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Indirubin Derivative 7-Bromoindirubin-3-Oxime (7Bio) Attenuates Aβ Oligomer-Induced Cognitive Impairments in Mice
Published in
Frontiers in Molecular Neuroscience, November 2017
DOI 10.3389/fnmol.2017.00393
Pubmed ID
Authors

Liping Chen, Chunhui Huang, Jieyi Shentu, Minjun Wang, Sicheng Yan, Fei Zhou, Zaijun Zhang, Chuang Wang, Yifan Han, Qinwen Wang, Wei Cui

Abstract

Indirubins are natural occurring alkaloids extracted from indigo dye-containing plants. Indirubins could inhibit various kinases, and might be used to treat chronic myelocytic leukemia, cancer and neurodegenerative disorders. 7-bromoindirubin-3-oxime (7Bio), an indirubin derivative derived from indirubin-3-oxime, possesses inhibitory effects against cyclin-dependent kinase-5 (CDK5) and glycogen synthase kinase-3β (GSK3β), two pharmacological targets of Alzheimer's disease (AD). In this study, we have discovered that 2.3-23.3 μg/kg 7Bio effectively prevented β-amyloid (Aβ) oligomer-induced impairments of spatial cognition and recognition without affecting bodyweight and motor functions in mice. Moreover, 7Bio potently inhibited Aβ oligomer-induced expression of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Furthermore, 7Bio significantly prevented the decreased expression of synapsin-1 and PSD-95, biomarkers of pre-synaptic and post-synaptic proteins in Aβ oligomer-treated mice. The mean optical density (OD) with hyper-phosphorylated tau (pTau), glial fibrillary acidic protein (GFAP) and CD45 positive staining in the hippocampus of 7Bio-treated mice were significantly decreased compared to those of Aβ oligomer-treated mice. In addition, Western blotting analysis showed that 7Bio attenuated Aβ oligomer-decreased expression of pSer9-GSK3β. Those results suggested that 7Bio could potently inhibit Aβ oligomer-induced neuroinflammation, synaptic impairments, tau hyper-phosphorylation, and activation of astrocytes and microglia, which may contribute to the neuroprotective effects of 7Bio. Based on these findings, we expected that 7Bio might be developed as a novel anti-AD lead compound.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 13%
Student > Bachelor 3 10%
Researcher 3 10%
Student > Ph. D. Student 3 10%
Other 1 3%
Other 3 10%
Unknown 13 43%
Readers by discipline Count As %
Neuroscience 5 17%
Biochemistry, Genetics and Molecular Biology 3 10%
Agricultural and Biological Sciences 2 7%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Nursing and Health Professions 1 3%
Other 4 13%
Unknown 14 47%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 December 2017.
All research outputs
#13,883,666
of 23,011,300 outputs
Outputs from Frontiers in Molecular Neuroscience
#1,410
of 2,910 outputs
Outputs of similar age
#223,653
of 438,556 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#47
of 123 outputs
Altmetric has tracked 23,011,300 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,910 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one has gotten more attention than average, scoring higher than 50% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 438,556 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 123 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 61% of its contemporaries.