↓ Skip to main content

Activation of Autophagy Contributes to Sevoflurane-Induced Neurotoxicity in Fetal Rats

Overview of attention for article published in Frontiers in Molecular Neuroscience, December 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
47 Dimensions

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Activation of Autophagy Contributes to Sevoflurane-Induced Neurotoxicity in Fetal Rats
Published in
Frontiers in Molecular Neuroscience, December 2017
DOI 10.3389/fnmol.2017.00432
Pubmed ID
Authors

Xingyue Li, Ziyi Wu, Yi Zhang, Ying Xu, Guang Han, Ping Zhao

Abstract

Numerous animal studies have demonstrated that commonly used general anesthetics may result in cognitive impairment in the immature brain. The prevailing theory is that general anesthetics could induce developmental neurotoxicity via enhanced apoptosis. In addition, inhibited proliferation induced by anesthetics has also been reported. So far, whether autophagy, a well-conserved cellular process that is critical for cell fate, also participates in anesthesia-induced neurotoxicity remains elusive. Here, we first examined autophagy-related changes after sevoflurane exposure and the effect of autophagy on apoptosis and proliferation, and we also explored the underlying mechanisms of autophagy activation. Pregnant rats were exposed to 2 or 3.5% sevoflurane for 2 h on gestational day 14 (G14); then, markers of autophagy and expression of autophagy pathway components were measured in fetal brains 2, 12, 24, and 48 h after anesthesia. Changes in neural stem cell (NSC) apoptosis, neurogenesis, neuron quantity and learning and memory function were examined after administration of an autophagy or PTEN inhibitor. The expression of microtubule-associated protein 1 light chain 3 (LC3)-II, Beclin-1 and phosphatase and tensin homolog on chromosome 10 (PTEN) were increased in the 3.5% sevoflurane group, while Sequestosome 1 (P62/SQSTM1), phospho-protein kinase B/protein kinase B (p-Akt/Akt) and mammalian target of rapamycin (mTOR) were decreased. 3-methyladenine (3-MA), an inhibitor of autophagy, or dipotassium bisperoxo-(5-hydroxypyridine-2-carboxyl)-oxovanadate (V) (bpV), a PTEN inhibitor, significantly attenuated the activation of autophagy, reversed the decreased expression of B-cell lymphoma-2 (Bcl-2) and reduced the number of terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL) positive cells, ameliorated the decline of Nestin expression, Ki67 positive cell rate, neuron quantity and cross platform times, and shortened the prolonged escape latency. Our results demonstrated that 2 h 3.5% sevoflurane exposure at G14 induced excessive autophagy in the fetal brain via the PTEN/Akt/mTOR pathway. Autophagy inhibition reversed anesthesia-induced NSC apoptosis, proliferation decline and memory deficits.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 2 13%
Student > Ph. D. Student 2 13%
Lecturer 1 7%
Student > Bachelor 1 7%
Student > Master 1 7%
Other 1 7%
Unknown 7 47%
Readers by discipline Count As %
Medicine and Dentistry 4 27%
Business, Management and Accounting 1 7%
Pharmacology, Toxicology and Pharmaceutical Science 1 7%
Psychology 1 7%
Neuroscience 1 7%
Other 0 0%
Unknown 7 47%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 January 2018.
All research outputs
#14,963,216
of 23,015,156 outputs
Outputs from Frontiers in Molecular Neuroscience
#1,680
of 2,912 outputs
Outputs of similar age
#254,432
of 440,933 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#56
of 112 outputs
Altmetric has tracked 23,015,156 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,912 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 36th percentile – i.e., 36% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 440,933 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 112 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.