↓ Skip to main content

High Throughput Measurement of Locomotor Sensitization to Volatilized Cocaine in Drosophila melanogaster

Overview of attention for article published in Frontiers in Molecular Neuroscience, February 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 X users
facebook
1 Facebook page

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
High Throughput Measurement of Locomotor Sensitization to Volatilized Cocaine in Drosophila melanogaster
Published in
Frontiers in Molecular Neuroscience, February 2018
DOI 10.3389/fnmol.2018.00025
Pubmed ID
Authors

Ana Filošević, Sabina Al-samarai, Rozi Andretić Waldowski

Abstract

Drosophila melanogaster can be used to identify genes with novel functional roles in neuronal plasticity induced by repeated consumption of addictive drugs. Behavioral sensitization is a relatively simple behavioral output of plastic changes that occur in the brain after repeated exposures to drugs of abuse. The development of screening procedures for genes that control behavioral sensitization has stalled due to a lack of high-throughput behavioral tests that can be used in genetically tractable organism, such asDrosophila. We have developed a new behavioral test, FlyBong, which combines delivery of volatilized cocaine (vCOC) to individually housed flies with objective quantification of their locomotor activity. There are two main advantages of FlyBong: it is high-throughput and it allows for comparisons of locomotor activity of individual flies before and after single or multiple exposures. At the population level, exposure to vCOC leads to transient and concentration-dependent increase in locomotor activity, representing sensitivity to an acute dose. A second exposure leads to further increase in locomotion, representing locomotor sensitization. We validate FlyBong by showing that locomotor sensitization at either the population or individual level is absent in the mutants for circadian genesperiod (per),Clock (Clk), andcycle (cyc). The locomotor sensitization that is present intimeless (tim)andpigment dispersing factor (pdf)mutant flies is in large part not cocaine specific, but derived from increased sensitivity to warm air. Circadian genes are not only integral part of the neural mechanism that is required for development of locomotor sensitization, but in addition, they modulate the intensity of locomotor sensitization as a function of the time of day. Motor-activating effects of cocaine are sexually dimorphic and require a functional dopaminergic transporter. FlyBong is a new and improved method for inducing and measuring locomotor sensitization to cocaine in individualDrosophila. Because of its high-throughput nature, FlyBong can be used in genetic screens or in selection experiments aimed at the unbiased identification of functional genes involved in acute or chronic effects of volatilized psychoactive substances.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 44 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 9 20%
Student > Master 8 18%
Student > Ph. D. Student 4 9%
Researcher 3 7%
Other 1 2%
Other 3 7%
Unknown 16 36%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 23%
Neuroscience 9 20%
Agricultural and Biological Sciences 3 7%
Nursing and Health Professions 1 2%
Physics and Astronomy 1 2%
Other 5 11%
Unknown 15 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 April 2018.
All research outputs
#13,901,936
of 23,577,654 outputs
Outputs from Frontiers in Molecular Neuroscience
#1,378
of 3,025 outputs
Outputs of similar age
#221,982
of 439,843 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#55
of 116 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,025 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one has gotten more attention than average, scoring higher than 51% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 439,843 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 116 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.