↓ Skip to main content

CB1R-Mediated Activation of Caspase-3 Causes Epigenetic and Neurobehavioral Abnormalities in Postnatal Ethanol-Exposed Mice

Overview of attention for article published in Frontiers in Molecular Neuroscience, February 2018
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (65th percentile)
  • Good Attention Score compared to outputs of the same age and source (67th percentile)

Mentioned by

twitter
6 X users

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
38 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
CB1R-Mediated Activation of Caspase-3 Causes Epigenetic and Neurobehavioral Abnormalities in Postnatal Ethanol-Exposed Mice
Published in
Frontiers in Molecular Neuroscience, February 2018
DOI 10.3389/fnmol.2018.00045
Pubmed ID
Authors

Shivakumar Subbanna, Nagaraja N. Nagre, Madhu Shivakumar, Vikram Joshi, Delphine Psychoyos, Abdullah Kutlar, Nagavedi S. Umapathy, Balapal S. Basavarajappa

Abstract

Alcohol exposure can affect brain development, leading to long-lasting behavioral problems, including cognitive impairment, which together is defined as fetal alcohol spectrum disorder (FASD). However, the fundamental mechanisms through which this occurs are largely unknown. In this study, we report that the exposure of postnatal day 7 (P7) mice to ethanol activates caspase-3 via cannabinoid receptor type-1 (CB1R) in neonatal mice and causes a reduction in methylated DNA binding protein (MeCP2) levels. The developmental expression of MeCP2 in mice is closely correlated with synaptogenesis and neuronal maturation. It was shown that ethanol treatment of P7 mice enhancedMecp2mRNA levels but reduced protein levels. The genetic deletion of CB1R prevented, and administration of a CB1R antagonist before ethanol treatment of P7 mice inhibited caspase-3 activation. Additionally, it reversed the loss of MeCP2 protein, cAMP response element binding protein (CREB) activation, and activity-regulated cytoskeleton-associated protein (Arc) expression. The inhibition of caspase-3 activity prior to ethanol administration prevented ethanol-induced loss of MeCP2, CREB activation, epigenetic regulation of Arc expression, long-term potentiation (LTP), spatial memory deficits and activity-dependent impairment of several signaling molecules, including MeCP2, in adult mice. Collectively, these results reveal that the ethanol-induced CB1R-mediated activation of caspase-3 degrades the MeCP2 protein in the P7 mouse brain and causes long-lasting neurobehavioral deficits in adult mice. This CB1R-mediated instability of MeCP2 during active synaptic maturation may disrupt synaptic circuit maturation and lead to neurobehavioral abnormalities, as observed in this animal model of FASD.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 38 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 6 16%
Student > Ph. D. Student 5 13%
Researcher 5 13%
Professor 4 11%
Other 3 8%
Other 8 21%
Unknown 7 18%
Readers by discipline Count As %
Neuroscience 8 21%
Medicine and Dentistry 6 16%
Biochemistry, Genetics and Molecular Biology 5 13%
Nursing and Health Professions 2 5%
Agricultural and Biological Sciences 2 5%
Other 4 11%
Unknown 11 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 March 2018.
All research outputs
#6,535,395
of 23,577,654 outputs
Outputs from Frontiers in Molecular Neuroscience
#870
of 3,025 outputs
Outputs of similar age
#113,472
of 332,243 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#43
of 133 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one has received more attention than most of these and is in the 72nd percentile.
So far Altmetric has tracked 3,025 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one has gotten more attention than average, scoring higher than 70% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,243 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.
We're also able to compare this research output to 133 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.