↓ Skip to main content

Molecular Neuropathology of Astrocytes and Oligodendrocytes in Alcohol Use Disorders

Overview of attention for article published in Frontiers in Molecular Neuroscience, March 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (70th percentile)
  • Good Attention Score compared to outputs of the same age and source (71st percentile)

Mentioned by

twitter
11 X users
facebook
1 Facebook page

Citations

dimensions_citation
49 Dimensions

Readers on

mendeley
77 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Molecular Neuropathology of Astrocytes and Oligodendrocytes in Alcohol Use Disorders
Published in
Frontiers in Molecular Neuroscience, March 2018
DOI 10.3389/fnmol.2018.00078
Pubmed ID
Authors

José J. Miguel-Hidalgo

Abstract

Postmortem studies reveal structural and molecular alterations of astrocytes and oligodendrocytes in both the gray and white matter (GM and WM) of the prefrontal cortex (PFC) in human subjects with chronic alcohol abuse or dependence. These glial cellular changes appear to parallel and may largely explain structural and functional alterations detected using neuroimaging techniques in subjects with alcohol use disorders (AUDs). Moreover, due to the crucial roles of astrocytes and oligodendrocytes in neurotransmission and signal conduction, these cells are very likely major players in the molecular mechanisms underpinning alcoholism-related connectivity disturbances between the PFC and relevant interconnecting brain regions. The glia-mediated etiology of alcohol-related brain damage is likely multifactorial since metabolic, hormonal, hepatic and hemodynamic factors as well as direct actions of ethanol or its metabolites have the potential to disrupt distinct aspects of glial neurobiology. Studies in animal models of alcoholism and postmortem human brains have identified astrocyte markers altered in response to significant exposures to ethanol or during alcohol withdrawal, such as gap-junction proteins, glutamate transporters or enzymes related to glutamate and gamma-aminobutyric acid (GABA) metabolism. Changes in these proteins and their regulatory pathways would not only cause GM neuronal dysfunction, but also disturbances in the ability of WM axons to convey impulses. In addition, alcoholism alters the expression of astrocyte and myelin proteins and of oligodendrocyte transcription factors important for the maintenance and plasticity of myelin sheaths in WM and GM. These changes are concomitant with epigenetic DNA and histone modifications as well as alterations in regulatory microRNAs (miRNAs) that likely cause profound disturbances of gene expression and protein translation. Knowledge is also available about interactions between astrocytes and oligodendrocytes not only at the Nodes of Ranvier (NR), but also in gap junction-based astrocyte-oligodendrocyte contacts and other forms of cell-to-cell communication now understood to be critical for the maintenance and formation of myelin. Close interactions between astrocytes and oligodendrocytes also suggest that therapies for alcoholism based on a specific glial cell type pathology will require a better understanding of molecular interactions between different cell types, as well as considering the possibility of using combined molecular approaches for more effective therapies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 11 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 77 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 77 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 21%
Researcher 11 14%
Student > Master 11 14%
Student > Bachelor 7 9%
Student > Doctoral Student 6 8%
Other 10 13%
Unknown 16 21%
Readers by discipline Count As %
Neuroscience 20 26%
Agricultural and Biological Sciences 11 14%
Biochemistry, Genetics and Molecular Biology 8 10%
Psychology 4 5%
Medicine and Dentistry 4 5%
Other 7 9%
Unknown 23 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 April 2023.
All research outputs
#5,727,247
of 23,578,918 outputs
Outputs from Frontiers in Molecular Neuroscience
#770
of 3,024 outputs
Outputs of similar age
#98,232
of 333,275 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#35
of 126 outputs
Altmetric has tracked 23,578,918 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,024 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one has gotten more attention than average, scoring higher than 74% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 333,275 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.
We're also able to compare this research output to 126 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.