↓ Skip to main content

Absence of Wdr13 Gene Predisposes Mice to Mild Social Isolation – Chronic Stress, Leading to Depression-Like Phenotype Associated With Differential Expression of Synaptic Proteins

Overview of attention for article published in Frontiers in Molecular Neuroscience, April 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Absence of Wdr13 Gene Predisposes Mice to Mild Social Isolation – Chronic Stress, Leading to Depression-Like Phenotype Associated With Differential Expression of Synaptic Proteins
Published in
Frontiers in Molecular Neuroscience, April 2018
DOI 10.3389/fnmol.2018.00133
Pubmed ID
Authors

Shiladitya Mitra, Ghantasala S. Sameer Kumar, B. Jyothi Lakshmi, Suman Thakur, Satish Kumar

Abstract

We earlier reported that the male mice lacking the Wdr13 gene (Wdr13-/0) showed mild anxiety, better memory retention, and up-regulation of synaptic proteins in the hippocampus. With increasing evidences from parallel studies in our laboratory about the possible role of Wdr13 in stress response, we investigated its role in brain. We observed that Wdr13 transcript gets up-regulated in the hippocampus of the wild-type mice exposed to stress. To further dissect its function, we analyzed the behavioral and molecular phenotypes of Wdr13-/0 mice when subjected to mild chronic psychological stress, namely; mild (attenuated) social isolation. We employed iTRAQ based quantitative proteomics, real time PCR and western blotting to investigate molecular changes. Three weeks of social isolation predisposed Wdr13-/0 mice to anhedonia, heightened anxiety-measured by Open field test (OFT), increased behavior despair- measured by Forced swim test (FST) and reduced dendritic branching along with decreased spine density of hippocampal CA1 neurons as compared to wild-type counterparts. This depression-like-phenotype was however ameliorated when treated with anti-depressant imipramine. Molecular analysis revealed that out of 1002 quantified proteins [1% False discovery rate (FDR), at-least two unique peptides], strikingly, a significant proportion of synaptic proteins including, SYN1, CAMK2A, and RAB3A were down-regulated in the socially isolated Wdr13-/0 mice as compared to its wild-type counterparts. This was in contrast to the elevated levels of these proteins in non-stressed mutants as compared to the controls. We hypothesized that a de-regulated transcription factor upstream of the synaptic genes might be responsible for the observed phenotype. Indeed, in the socially isolated Wdr13-/0 mice, there was an up-regulation of GATA1 - a transcription factor that negatively regulates synaptic genes and has been associated with Major Depression (MD) in humans. The present study demonstrates significant genotype × enviornment interaction for Wdr13 gene as shown by the reversal in the expression levels of several synaptic proteins in the mutant vis-à-vis wild-type mouse when exposed to social isolation stress.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 4 21%
Student > Ph. D. Student 2 11%
Researcher 2 11%
Student > Master 2 11%
Other 1 5%
Other 3 16%
Unknown 5 26%
Readers by discipline Count As %
Psychology 4 21%
Biochemistry, Genetics and Molecular Biology 2 11%
Neuroscience 2 11%
Economics, Econometrics and Finance 2 11%
Arts and Humanities 1 5%
Other 2 11%
Unknown 6 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 May 2018.
All research outputs
#14,981,465
of 23,045,021 outputs
Outputs from Frontiers in Molecular Neuroscience
#1,680
of 2,919 outputs
Outputs of similar age
#197,145
of 326,539 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#70
of 123 outputs
Altmetric has tracked 23,045,021 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,919 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 36th percentile – i.e., 36% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,539 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 123 others from the same source and published within six weeks on either side of this one. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.