↓ Skip to main content

Activation of Dorsomedial Hypothalamic Neurons Promotes Physical Activity and Decreases Food Intake and Body Weight in Zucker Fatty Rats

Overview of attention for article published in Frontiers in Molecular Neuroscience, May 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Activation of Dorsomedial Hypothalamic Neurons Promotes Physical Activity and Decreases Food Intake and Body Weight in Zucker Fatty Rats
Published in
Frontiers in Molecular Neuroscience, May 2018
DOI 10.3389/fnmol.2018.00179
Pubmed ID
Authors

Ni Zhang, Liang Yang, Lanting Guo, Sheng Bi

Abstract

Previous reports have shown that running wheel activity or voluntary exercise prevents hyperphagia and obesity in various animal models of obesity, but such effects seem only minimal in obese animals lacking leptin or leptin receptors. The mechanisms underlying this ineffectiveness remain unclear. Here, we identified the action of neuronal activation in the dorsomedial hypothalamus (DMH) in modulating physical activity, food intake and body weight using leptin receptor mutant obese Zucker (Lepr(fa), ZF) and Koletsky (Lepr(fak), SHROB) rats. Ad lib-fed SHROB rats with locked running wheels became hyperphagic and gained body weight rapidly. These alterations were not ameliorated in ad lib-fed SHROB rats with voluntary access to running wheels, but the body weight of SHROB rats with running wheel access was significantly decreased when they were pair-fed to the amounts consumed by lean controls. Determinations of hypothalamic gene expression revealed that sedentary ad lib-fed SHROB rats had increased expression of neuropeptide Y (Npy) and decreased expression of pro-opiomelanocortin (Pomc) in the arcuate nucleus (ARC). Both ARC Npy and Pomc expression were further altered under running and pair-fed conditions, indicating that both genes are appropriately regulated in response to increased energy demands or alterations caused by running activity and food restriction. Strikingly, c-Fos immunohistochemistry revealed that while voluntary running activity elevated the number of c-Fos positive cells in the DMH (particularly in the ventral and caudal subregions) of intact rats, such activation was not observed in ZF rats. Using adeno-associated virus (AAV)-mediated expression of the designer receptors hM3D(Gq) in the ventral and caudal DMH of ZF rats, we found that chemogenetic stimulation of neurons in these DMH subregions via injection of the designer drug clozapine N-oxide (CNO) significantly increased their running activity and reduced their food intake and body weight. Together, these results demonstrate that activation of ventral and caudal DMH neurons promotes physical activity and decreases food intake and body weight and suggest that intact DMH neural signaling is likely crucial for exercise-induced reductions of food intake and body weight in obese rats lacking leptin receptors.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 42 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 24%
Student > Master 6 14%
Student > Bachelor 5 12%
Researcher 4 10%
Student > Doctoral Student 4 10%
Other 4 10%
Unknown 9 21%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 24%
Neuroscience 8 19%
Medicine and Dentistry 4 10%
Pharmacology, Toxicology and Pharmaceutical Science 3 7%
Nursing and Health Professions 2 5%
Other 5 12%
Unknown 10 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 June 2018.
All research outputs
#14,111,691
of 23,055,429 outputs
Outputs from Frontiers in Molecular Neuroscience
#1,441
of 2,921 outputs
Outputs of similar age
#180,737
of 331,172 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#47
of 113 outputs
Altmetric has tracked 23,055,429 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,921 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,172 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 113 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.