↓ Skip to main content

Visualizing BDNF Transcript Usage During Sound-Induced Memory Linked Plasticity

Overview of attention for article published in Frontiers in Molecular Neuroscience, July 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Visualizing BDNF Transcript Usage During Sound-Induced Memory Linked Plasticity
Published in
Frontiers in Molecular Neuroscience, July 2018
DOI 10.3389/fnmol.2018.00260
Pubmed ID
Authors

Lucas Matt, Philipp Eckert, Rama Panford-Walsh, Hyun-Soon Geisler, Anne E. Bausch, Marie Manthey, Nicolas I. C. Müller, Csaba Harasztosi, Karin Rohbock, Peter Ruth, Eckhard Friauf, Thomas Ott, Ulrike Zimmermann, Lukas Rüttiger, Thomas Schimmang, Marlies Knipper, Wibke Singer

Abstract

Activity-dependent BDNF (brain-derived neurotrophic factor) expression is hypothesized to be a cue for the context-specificity of memory formation. So far, activity-dependent BDNF cannot be explicitly monitored independently of basal BDNF levels. We used the BLEV ( B DNF- l ive- e xon- v isualization) reporter mouse to specifically detect activity-dependent usage of Bdnf exon-IV and -VI promoters through bi-cistronic co-expression of CFP and YFP, respectively. Enriching acoustic stimuli led to improved peripheral and central auditory brainstem responses, increased Schaffer collateral LTP, and enhanced performance in the Morris water maze. Within the brainstem, neuronal activity was increased and accompanied by a trend for higher expression levels of Bdnf exon-IV-CFP and exon-VI-YFP transcripts. In the hippocampus BDNF transcripts were clearly increased parallel to changes in parvalbumin expression and were localized to specific neurons and capillaries. Severe acoustic trauma, in contrast, elevated neither Bdnf transcript levels, nor auditory responses, parvalbumin or LTP. Together, this suggests that critical sensory input is essential for recruitment of activity-dependent auditory-specific BDNF expression that may shape network adaptation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 22%
Researcher 4 15%
Student > Bachelor 2 7%
Student > Doctoral Student 2 7%
Student > Master 2 7%
Other 1 4%
Unknown 10 37%
Readers by discipline Count As %
Neuroscience 7 26%
Medicine and Dentistry 4 15%
Computer Science 1 4%
Linguistics 1 4%
Agricultural and Biological Sciences 1 4%
Other 1 4%
Unknown 12 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 August 2018.
All research outputs
#14,422,246
of 23,098,660 outputs
Outputs from Frontiers in Molecular Neuroscience
#1,555
of 2,930 outputs
Outputs of similar age
#185,666
of 329,833 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#60
of 122 outputs
Altmetric has tracked 23,098,660 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,930 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 43rd percentile – i.e., 43% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,833 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 122 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.