↓ Skip to main content

M-Calpain Activation Facilitates Seizure Induced KCC2 Down Regulation

Overview of attention for article published in Frontiers in Molecular Neuroscience, August 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
M-Calpain Activation Facilitates Seizure Induced KCC2 Down Regulation
Published in
Frontiers in Molecular Neuroscience, August 2018
DOI 10.3389/fnmol.2018.00287
Pubmed ID
Authors

Li Wan, Liang Ren, Lulan Chen, Guoxiang Wang, Xu Liu, Benjamin H. Wang, Yun Wang

Abstract

Potassium chloride co-transporter 2 (KCC2), a major chloride transporter that maintains GABAA receptor inhibition in mature mammalian neurons, is down-regulated in the hippocampus during epileptogenesis. Impaired KCC2 function accelerates or facilitates seizure onset. Calpain, with two main subtypes of m- and μ-calpain, is a Ca2+-dependent cysteine protease that mediates the nonlysosomal degradation of KCC2. Although recent studies have demonstrated that calpain inhibitors exert antiepileptic and neuroprotective effects in animal models of acute and chronic epilepsy, whether calpain activation affects seizure induction through KCC2 degradation remains unknown. Our results showed that: (1) Blockade of calpain by non-selective calpain inhibitor MDL-28170 prevented convulsant stimulation induced KCC2 downregulation, and reduced the incidence and the severity of pentylenetetrazole (PTZ) induced seizures. (2) m-calpain, but not μ-calpain, inhibitor mimicked MDL-28170 effect on preventing KCC2 downregulation. (3) Phosphorylation of m-calpain has been significantly enhanced during seizure onset, which was partly mediated by the calcium independent MAPK/ERK signaling pathway activation. (4) MAPK/ERK signaling blockade also had similar effect as total calpain blockade on both KCC2 downregulation and animal seizure induction. The results indicate that upregulated m-calpain activation by MAPK/ERK during convulsant stimulation down regulates both cytoplasm- and membrane KCC2, and in turn facilitates seizure induction. This finding may provide a foundation for the development of highly effective antiepileptic drugs targeting of m-calpain.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 20%
Student > Bachelor 4 13%
Student > Master 4 13%
Student > Doctoral Student 2 7%
Student > Ph. D. Student 2 7%
Other 5 17%
Unknown 7 23%
Readers by discipline Count As %
Neuroscience 10 33%
Medicine and Dentistry 4 13%
Agricultural and Biological Sciences 2 7%
Nursing and Health Professions 1 3%
Biochemistry, Genetics and Molecular Biology 1 3%
Other 1 3%
Unknown 11 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 August 2018.
All research outputs
#21,709,675
of 24,226,848 outputs
Outputs from Frontiers in Molecular Neuroscience
#2,725
of 3,158 outputs
Outputs of similar age
#294,547
of 337,233 outputs
Outputs of similar age from Frontiers in Molecular Neuroscience
#123
of 134 outputs
Altmetric has tracked 24,226,848 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,158 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 337,233 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 134 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.