↓ Skip to main content

Neuroglial Plasticity at Striatal Glutamatergic Synapses in Parkinson's Disease

Overview of attention for article published in Frontiers in Systems Neuroscience, January 2011
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
49 Dimensions

Readers on

mendeley
80 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Neuroglial Plasticity at Striatal Glutamatergic Synapses in Parkinson's Disease
Published in
Frontiers in Systems Neuroscience, January 2011
DOI 10.3389/fnsys.2011.00068
Pubmed ID
Authors

Rosa M. Villalba, Yoland Smith

Abstract

Striatal dopamine denervation is the pathological hallmark of Parkinson's disease (PD). Another major pathological change described in animal models and PD patients is a significant reduction in the density of dendritic spines on medium spiny striatal projection neurons. Simultaneously, the ultrastructural features of the neuronal synaptic elements at the remaining corticostriatal and thalamostriatal glutamatergic axo-spinous synapses undergo complex ultrastructural remodeling consistent with increased synaptic activity (Villalba and Smith, 2011). The concept of tripartite synapses (TS) was introduced a decade ago, according to which astrocytes process and exchange information with neuronal synaptic elements at glutamatergic synapses (Araque et al., 1999a). Although there has been compelling evidence that astrocytes are integral functional elements of tripartite glutamatergic synaptic complexes in the cerebral cortex and hippocampus, their exact functional role, degree of plasticity and preponderance in other CNS regions remain poorly understood. In this review, we discuss our recent findings showing that neuronal elements at cortical and thalamic glutamatergic synapses undergo significant plastic changes in the striatum of MPTP-treated parkinsonian monkeys. We also present new ultrastructural data that demonstrate a significant expansion of the astrocytic coverage of striatal TS synapses in the parkinsonian state, providing further evidence for ultrastructural compensatory changes that affect both neuronal and glial elements at TS. Together with our limited understanding of the mechanisms by which astrocytes respond to changes in neuronal activity and extracellular transmitter homeostasis, the role of both neuronal and glial components of excitatory synapses must be considered, if one hopes to take advantage of glia-neuronal communication knowledge to better understand the pathophysiology of striatal processing in parkinsonism, and develop new PD therapeutics.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 80 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 2 3%
Japan 1 1%
Unknown 77 96%

Demographic breakdown

Readers by professional status Count As %
Researcher 18 23%
Student > Ph. D. Student 14 18%
Student > Master 9 11%
Student > Doctoral Student 6 8%
Professor > Associate Professor 5 6%
Other 14 18%
Unknown 14 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 24 30%
Neuroscience 15 19%
Medicine and Dentistry 9 11%
Biochemistry, Genetics and Molecular Biology 3 4%
Psychology 3 4%
Other 7 9%
Unknown 19 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 January 2012.
All research outputs
#18,313,878
of 22,675,759 outputs
Outputs from Frontiers in Systems Neuroscience
#1,127
of 1,338 outputs
Outputs of similar age
#159,968
of 180,328 outputs
Outputs of similar age from Frontiers in Systems Neuroscience
#32
of 40 outputs
Altmetric has tracked 22,675,759 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,338 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.7. This one is in the 8th percentile – i.e., 8% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 180,328 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 5th percentile – i.e., 5% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 40 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.