↓ Skip to main content

Prediction of Task-Related BOLD fMRI with Amplitude Signatures of Resting-State fMRI

Overview of attention for article published in Frontiers in Systems Neuroscience, January 2012
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (74th percentile)
  • Good Attention Score compared to outputs of the same age and source (74th percentile)

Mentioned by

twitter
1 X user
wikipedia
3 Wikipedia pages

Readers on

mendeley
124 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Prediction of Task-Related BOLD fMRI with Amplitude Signatures of Resting-State fMRI
Published in
Frontiers in Systems Neuroscience, January 2012
DOI 10.3389/fnsys.2012.00007
Pubmed ID
Authors

Sridhar S. Kannurpatti, Bart Rypma, Bharat B. Biswal

Abstract

Blood oxygen contrast-functional magnetic resonance imaging (fMRI) signals are a convolution of neural and vascular components. Several studies indicate that task-related (T-fMRI) or resting-state (R-fMRI) responses linearly relate to hypercapnic task responses. Based on the linearity of R-fMRI and T-fMRI with hypercapnia demonstrated by different groups using different study designs, we hypothesized that R-fMRI and T-fMRI signals are governed by a common physiological mechanism and that resting-state fluctuation of amplitude (RSFA) should be linearly related to T-fMRI responses. We tested this prediction in a group of healthy younger humans where R-fMRI, T-fMRI, and hypercapnic (breath hold, BH) task measures were obtained form the same scan session during resting state and during performance of motor and BH tasks. Within individual subjects, significant linear correlations were observed between motor and BH task responses across voxels. When averaged over the whole brain, the subject-wise correlation between the motor and BH tasks showed a similar linear relationship within the group. Likewise, a significant linear correlation was observed between motor-task activity and RSFA across voxels and subjects. The linear rest-task (R-T) relationship between motor activity and RSFA suggested that R-fMRI and T-fMRI responses are governed by similar physiological mechanisms. A practical use of the R-T relationship is its potential to estimate T-fMRI responses in special populations unable to perform tasks during fMRI scanning. Using the R-T relationship determined from the first group of 12 healthy subjects, we predicted the T-fMRI responses in a second group of 7 healthy subjects. RSFA in both the lower and higher frequency ranges robustly predicted the magnitude of T-fMRI responses at the subject and voxel levels. We propose that T-fMRI responses are reliably predictable to the voxel level in situations where only R-fMRI measures are possible, and may be useful for assessing neural activity in task non-compliant clinical populations.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 124 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 2%
Germany 1 <1%
Chile 1 <1%
Austria 1 <1%
Italy 1 <1%
Canada 1 <1%
United Kingdom 1 <1%
Unknown 116 94%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 32 26%
Researcher 30 24%
Student > Master 12 10%
Student > Bachelor 9 7%
Professor > Associate Professor 8 6%
Other 19 15%
Unknown 14 11%
Readers by discipline Count As %
Neuroscience 26 21%
Psychology 21 17%
Engineering 13 10%
Medicine and Dentistry 13 10%
Physics and Astronomy 11 9%
Other 21 17%
Unknown 19 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 September 2019.
All research outputs
#6,674,205
of 23,577,654 outputs
Outputs from Frontiers in Systems Neuroscience
#530
of 1,364 outputs
Outputs of similar age
#58,892
of 247,799 outputs
Outputs of similar age from Frontiers in Systems Neuroscience
#12
of 51 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one has received more attention than most of these and is in the 70th percentile.
So far Altmetric has tracked 1,364 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one has gotten more attention than average, scoring higher than 60% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 247,799 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 51 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.