↓ Skip to main content

Computational models of neurophysiological correlates of tinnitus

Overview of attention for article published in Frontiers in Systems Neuroscience, January 2012
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
66 Dimensions

Readers on

mendeley
87 Mendeley
citeulike
4 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Computational models of neurophysiological correlates of tinnitus
Published in
Frontiers in Systems Neuroscience, January 2012
DOI 10.3389/fnsys.2012.00034
Pubmed ID
Authors

Roland Schaette, Richard Kempter

Abstract

The understanding of tinnitus has progressed considerably in the past decade, but the details of the mechanisms that give rise to this phantom perception of sound without a corresponding acoustic stimulus have not yet been pinpointed. It is now clear that tinnitus is generated in the brain, not in the ear, and that it is correlated with pathologically altered spontaneous activity of neurons in the central auditory system. Both increased spontaneous firing rates and increased neuronal synchrony have been identified as putative neuronal correlates of phantom sounds in animal models, and both phenomena can be triggered by damage to the cochlea. Various mechanisms could underlie the generation of such aberrant activity. At the cellular level, decreased synaptic inhibition and increased neuronal excitability, which may be related to homeostatic plasticity, could lead to an over-amplification of natural spontaneous activity. At the network level, lateral inhibition could amplify differences in spontaneous activity, and structural changes such as reorganization of tonotopic maps could lead to self-sustained activity in recurrently connected neurons. However, it is difficult to disentangle the contributions of different mechanisms in experiments, especially since not all changes observed in animal models of tinnitus are necessarily related to tinnitus. Computational modeling presents an opportunity of evaluating these mechanisms and their relation to tinnitus. Here we review the computational models for the generation of neurophysiological correlates of tinnitus that have been proposed so far, and evaluate predictions and compare them to available data. We also assess the limits of their explanatory power, thus demonstrating where an understanding is still lacking and where further research may be needed. Identifying appropriate models is important for finding therapies, and we therefore, also summarize the implications of the models for approaches to treat tinnitus.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 87 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 2%
Italy 2 2%
Unknown 83 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 28 32%
Student > Ph. D. Student 13 15%
Student > Master 10 11%
Professor > Associate Professor 8 9%
Student > Bachelor 5 6%
Other 15 17%
Unknown 8 9%
Readers by discipline Count As %
Agricultural and Biological Sciences 18 21%
Neuroscience 13 15%
Engineering 11 13%
Medicine and Dentistry 11 13%
Psychology 5 6%
Other 17 20%
Unknown 12 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 June 2012.
All research outputs
#14,605,487
of 22,675,759 outputs
Outputs from Frontiers in Systems Neuroscience
#882
of 1,338 outputs
Outputs of similar age
#158,027
of 244,088 outputs
Outputs of similar age from Frontiers in Systems Neuroscience
#28
of 51 outputs
Altmetric has tracked 22,675,759 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,338 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.7. This one is in the 33rd percentile – i.e., 33% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 244,088 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 34th percentile – i.e., 34% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 51 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.