↓ Skip to main content

Decrease in gamma-band activity tracks sequence learning

Overview of attention for article published in Frontiers in Systems Neuroscience, January 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
52 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Decrease in gamma-band activity tracks sequence learning
Published in
Frontiers in Systems Neuroscience, January 2015
DOI 10.3389/fnsys.2014.00222
Pubmed ID
Authors

Radhika Madhavan, Daniel Millman, Hanlin Tang, Nathan E. Crone, Fredrick A. Lenz, Travis S. Tierney, Joseph R. Madsen, Gabriel Kreiman, William S. Anderson

Abstract

Learning novel sequences constitutes an example of declarative memory formation, involving conscious recall of temporal events. Performance in sequence learning tasks improves with repetition and involves forming temporal associations over scales of seconds to minutes. To further understand the neural circuits underlying declarative sequence learning over trials, we tracked changes in intracranial field potentials (IFPs) recorded from 1142 electrodes implanted throughout temporal and frontal cortical areas in 14 human subjects, while they learned the temporal-order of multiple sequences of images over trials through repeated recall. We observed an increase in power in the gamma frequency band (30-100 Hz) in the recall phase, particularly in areas within the temporal lobe including the parahippocampal gyrus. The degree of this gamma power enhancement decreased over trials with improved sequence recall. Modulation of gamma power was directly correlated with the improvement in recall performance. When presenting new sequences, gamma power was reset to high values and decreased again after learning. These observations suggest that signals in the gamma frequency band may play a more prominent role during the early steps of the learning process rather than during the maintenance of memory traces.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 2%
Unknown 51 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 13 25%
Student > Ph. D. Student 12 23%
Student > Doctoral Student 6 12%
Professor 3 6%
Student > Bachelor 3 6%
Other 9 17%
Unknown 6 12%
Readers by discipline Count As %
Neuroscience 11 21%
Psychology 9 17%
Agricultural and Biological Sciences 6 12%
Engineering 3 6%
Medicine and Dentistry 2 4%
Other 11 21%
Unknown 10 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 February 2015.
All research outputs
#15,309,583
of 22,769,322 outputs
Outputs from Frontiers in Systems Neuroscience
#959
of 1,341 outputs
Outputs of similar age
#209,025
of 351,673 outputs
Outputs of similar age from Frontiers in Systems Neuroscience
#31
of 49 outputs
Altmetric has tracked 22,769,322 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,341 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.6. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 351,673 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 49 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.