↓ Skip to main content

The vestibular implant: frequency-dependency of the electrically evoked vestibulo-ocular reflex in humans

Overview of attention for article published in Frontiers in Systems Neuroscience, January 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
64 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The vestibular implant: frequency-dependency of the electrically evoked vestibulo-ocular reflex in humans
Published in
Frontiers in Systems Neuroscience, January 2015
DOI 10.3389/fnsys.2014.00255
Pubmed ID
Authors

Raymond van de Berg, Nils Guinand, T. A. Khoa Nguyen, Maurizio Ranieri, Samuel Cavuscens, Jean-Philippe Guyot, Robert Stokroos, Herman Kingma, Angelica Perez-Fornos

Abstract

The vestibulo-ocular reflex (VOR) shows frequency-dependent behavior. This study investigated whether the characteristics of the electrically evoked VOR (eVOR) elicited by a vestibular implant, showed the same frequency-dependency. Twelve vestibular electrodes implanted in seven patients with bilateral vestibular hypofunction (BVH) were tested. Stimuli consisted of amplitude-modulated electrical stimulation with a sinusoidal profile at frequencies of 0.5, 1, and 2 Hz. The main characteristics of the eVOR were evaluated and compared to the "natural" VOR characteristics measured in a group of age-matched healthy volunteers who were subjected to horizontal whole body rotations with equivalent sinusoidal velocity profiles at the same frequencies. A strong and significant effect of frequency was observed in the total peak eye velocity of the eVOR. This effect was similar to that observed in the "natural" VOR. Other characteristics of the (e)VOR (angle, habituation-index, and asymmetry) showed no significant frequency-dependent effect. In conclusion, this study demonstrates that, at least at the specific (limited) frequency range tested, responses elicited by a vestibular implant closely mimic the frequency-dependency of the "normal" vestibular system.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 64 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 63 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 22%
Student > Postgraduate 6 9%
Professor 5 8%
Other 5 8%
Researcher 5 8%
Other 17 27%
Unknown 12 19%
Readers by discipline Count As %
Medicine and Dentistry 24 38%
Agricultural and Biological Sciences 4 6%
Nursing and Health Professions 4 6%
Engineering 4 6%
Neuroscience 4 6%
Other 11 17%
Unknown 13 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 May 2016.
All research outputs
#15,313,289
of 22,775,504 outputs
Outputs from Frontiers in Systems Neuroscience
#958
of 1,341 outputs
Outputs of similar age
#209,281
of 352,017 outputs
Outputs of similar age from Frontiers in Systems Neuroscience
#31
of 49 outputs
Altmetric has tracked 22,775,504 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,341 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.6. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 352,017 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 49 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.