↓ Skip to main content

Sensitivity to microstimulation of somatosensory cortex distributed over multiple electrodes

Overview of attention for article published in Frontiers in Systems Neuroscience, January 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
35 Dimensions

Readers on

mendeley
67 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Sensitivity to microstimulation of somatosensory cortex distributed over multiple electrodes
Published in
Frontiers in Systems Neuroscience, January 2015
DOI 10.3389/fnsys.2015.00047
Pubmed ID
Authors

Sungshin Kim, Thierri Callier, Gregg A. Tabot, Francesco V. Tenore, Sliman J. Bensmaia

Abstract

Meaningful and repeatable tactile sensations can be evoked by electrically stimulating primary somatosensory cortex. Intracortical microstimulation (ICMS) may thus be a viable approach to restore the sense of touch in individuals who have lost it, for example tetraplegic patients. One of the potential limitations of this approach, however, is that high levels of current can damage the neuronal tissue if the resulting current densities are too high. The limited range of safe ICMS amplitudes thus limits the dynamic range of ICMS-evoked sensations. One way to get around this limitation would be to distribute the ICMS over multiple electrodes in the hopes of intensifying the resulting percept without increasing the current density experienced by the neuronal tissue. Here, we test whether stimulating through multiple electrodes is a viable solution to increase the dynamic range of ICMS-elicited sensations without increasing the peak current density. To this end, we compare the ability of non-human primates to detect ICMS delivered through one vs. multiple electrodes. We also compare their ability to discriminate pulse trains differing in amplitude when these are delivered through one or more electrodes. We find that increasing the number of electrodes through which ICMS is delivered only has a marginal effect on detectability or discriminability despite the fact that 2-4 times more current is delivered overall. Furthermore, the impact of multielectrode stimulation (or lack thereof) is found whether pulses are delivered synchronously or asynchronously, whether the leading phase of the pulses is cathodic or anodic, and regardless of the spatial configuration of the electrode groups.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 67 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 3 4%
Russia 1 1%
Unknown 63 94%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 27 40%
Researcher 15 22%
Student > Master 6 9%
Student > Bachelor 2 3%
Student > Doctoral Student 2 3%
Other 5 7%
Unknown 10 15%
Readers by discipline Count As %
Neuroscience 24 36%
Engineering 18 27%
Agricultural and Biological Sciences 6 9%
Medicine and Dentistry 4 6%
Social Sciences 2 3%
Other 2 3%
Unknown 11 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 April 2016.
All research outputs
#13,937,024
of 22,793,427 outputs
Outputs from Frontiers in Systems Neuroscience
#794
of 1,342 outputs
Outputs of similar age
#181,268
of 353,011 outputs
Outputs of similar age from Frontiers in Systems Neuroscience
#18
of 36 outputs
Altmetric has tracked 22,793,427 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,342 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.6. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 353,011 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 36 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.