↓ Skip to main content

Differential organization of cortical inputs to striatal projection neurons of the matrix compartment in rats

Overview of attention for article published in Frontiers in Systems Neuroscience, April 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
43 Dimensions

Readers on

mendeley
93 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Differential organization of cortical inputs to striatal projection neurons of the matrix compartment in rats
Published in
Frontiers in Systems Neuroscience, April 2015
DOI 10.3389/fnsys.2015.00051
Pubmed ID
Authors

Yunping Deng, Jose Lanciego, Lydia Kerkerian-Le Goff, Patrice Coulon, Pascal Salin, Philippe Kachidian, Wanlong Lei, Nobel Del Mar, Anton Reiner

Abstract

In prior studies, we described the differential organization of corticostriatal and thalamostriatal inputs to the spines of direct pathway (dSPNs) and indirect pathway striatal projection neurons (iSPNs) of the matrix compartment. In the present electron microscopic (EM) analysis, we have refined understanding of the relative amounts of cortical axospinous vs. axodendritic input to the two types of SPNs. Of note, we found that individual dSPNs receive about twice as many axospinous synaptic terminals from IT-type (intratelencephalically projecting) cortical neurons as they do from PT-type (pyramidal tract projecting) cortical neurons. We also found that PT-type axospinous synaptic terminals were about 1.5 times as common on individual iSPNs as IT-type axospinous synaptic terminals. Overall, a higher percentage of IT-type terminals contacted dSPN than iSPN spines, while a higher percentage of PT-type terminals contacted iSPN than dSPN spines. Notably, IT-type axospinous synaptic terminals were significantly larger on iSPN spines than on dSPN spines. By contrast to axospinous input, the axodendritic PT-type input to dSPNs was more substantial than that to iSPNs, and the axodendritic IT-type input appeared to be meager and comparable for both SPN types. The prominent axodendritic PT-type input to dSPNs may accentuate their PT-type responsiveness, and the large size of axospinous IT-type terminals on iSPNs may accentuate their IT-type responsiveness. Using transneuronal labeling with rabies virus to selectively label the cortical neurons with direct input to the dSPNs projecting to the substantia nigra pars reticulata, we found that the input predominantly arose from neurons in the upper layers of motor cortices, in which IT-type perikarya predominate. The differential cortical input to SPNs is likely to play key roles in motor control and motor learning.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 93 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 1%
Sweden 1 1%
Portugal 1 1%
Norway 1 1%
Unknown 89 96%

Demographic breakdown

Readers by professional status Count As %
Researcher 21 23%
Student > Ph. D. Student 18 19%
Student > Master 11 12%
Student > Bachelor 9 10%
Student > Doctoral Student 7 8%
Other 15 16%
Unknown 12 13%
Readers by discipline Count As %
Neuroscience 38 41%
Agricultural and Biological Sciences 22 24%
Medicine and Dentistry 6 6%
Biochemistry, Genetics and Molecular Biology 5 5%
Psychology 4 4%
Other 5 5%
Unknown 13 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 May 2015.
All research outputs
#14,223,874
of 22,803,211 outputs
Outputs from Frontiers in Systems Neuroscience
#836
of 1,342 outputs
Outputs of similar age
#139,245
of 264,354 outputs
Outputs of similar age from Frontiers in Systems Neuroscience
#30
of 55 outputs
Altmetric has tracked 22,803,211 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,342 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.6. This one is in the 34th percentile – i.e., 34% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,354 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 55 others from the same source and published within six weeks on either side of this one. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.