↓ Skip to main content

Percept of the duration of a vibrotactile stimulus is altered by changing its amplitude

Overview of attention for article published in Frontiers in Systems Neuroscience, May 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Percept of the duration of a vibrotactile stimulus is altered by changing its amplitude
Published in
Frontiers in Systems Neuroscience, May 2015
DOI 10.3389/fnsys.2015.00077
Pubmed ID
Authors

Eric M. Francisco, Jameson K. Holden, Richard H. Nguyen, Oleg V. Favorov, Mark Tommerdahl

Abstract

There have been numerous studies conducted on time perception. However, very few of these have involved tactile stimuli to assess a subject's capacity for duration discrimination. Previous optical imaging studies in non-human primates demonstrated that increasing the duration of a vibrotactile stimulus resulted in a consistently longer and more well defined evoked SI cortical response. Additionally, and perhaps more interestingly, increasing the amplitude of a vibrotactile stimulus not only evoked a larger magnitude optical intrinsic signal (OIS), but the return to baseline of the evoked response was much longer in duration for larger amplitude stimuli. This led the authors to hypothesize that the magnitude of a vibrotactile stimulus could influence the perception of its duration. In order to test this hypothesis, subjects were asked to compare two sets of vibrotactile stimuli. When vibrotactile stimuli differed only in duration, subjects typically had a difference limen (DL) of approximately 13%, and this followed Weber's Law for standards between 500 and 1500 ms, as increasing the value of the standard yielded a proportional increase in DL. However, the percept of duration was impacted by variations in amplitude of the vibrotactile stimuli. Specifically, increasing the amplitude of the standard stimulus had the effect of increasing the DL, while increasing the amplitude of the test stimulus had the effect of decreasing the DL. A pilot study, conducted on individuals who were concussed, found that increasing the amplitude of the standard did not have an impact on the DL of this group of individuals. Since this effect did not parallel what was predicted from the optical imaging findings in somatosensory cortex of non-human primates, the authors suggest that this particular measure or observation could be sensitive to neuroinflammation and that neuron-glial interactions, impacted by concussion, could have the effect of ignoring, or not integrating, the increased amplitude.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Australia 1 3%
Brazil 1 3%
Unknown 38 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 28%
Student > Ph. D. Student 7 18%
Student > Bachelor 4 10%
Student > Postgraduate 3 8%
Student > Master 3 8%
Other 5 13%
Unknown 7 18%
Readers by discipline Count As %
Neuroscience 12 30%
Psychology 5 13%
Engineering 4 10%
Agricultural and Biological Sciences 3 8%
Sports and Recreations 3 8%
Other 4 10%
Unknown 9 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 June 2015.
All research outputs
#14,223,874
of 22,803,211 outputs
Outputs from Frontiers in Systems Neuroscience
#836
of 1,342 outputs
Outputs of similar age
#138,516
of 266,754 outputs
Outputs of similar age from Frontiers in Systems Neuroscience
#22
of 44 outputs
Altmetric has tracked 22,803,211 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,342 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.6. This one is in the 34th percentile – i.e., 34% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 266,754 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 44 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.