↓ Skip to main content

Transcutaneous induction of stimulus-timing-dependent plasticity in dorsal cochlear nucleus

Overview of attention for article published in Frontiers in Systems Neuroscience, August 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Readers on

mendeley
37 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Transcutaneous induction of stimulus-timing-dependent plasticity in dorsal cochlear nucleus
Published in
Frontiers in Systems Neuroscience, August 2015
DOI 10.3389/fnsys.2015.00116
Pubmed ID
Authors

Calvin Wu, David T. Martel, Susan E. Shore

Abstract

The cochlear nucleus (CN) is the first site of multisensory integration in the ascending auditory pathway. The principal output neurons of the dorsal cochlear nucleus (DCN), fusiform cells, receive somatosensory information relayed by the CN granule cells from the trigeminal and dorsal column pathways. Integration of somatosensory and auditory inputs results in long-term enhancement or suppression in a stimulus-timing-dependent manner. Here, we demonstrate that stimulus-timing-dependent plasticity (STDP) can be induced in DCN fusiform cells using paired auditory and transcutaneous electrical stimulation of the face and neck to activate trigeminal and dorsal column pathways to the CN, respectively. Long-lasting changes in fusiform cell firing rates persisted for up to 2 h after this bimodal stimulation, and followed Hebbian or anti-Hebbian rules, depending on tone duration, but not somatosensory stimulation location: 50 ms paired tones evoked predominantly Hebbian, while 10 ms paired tones evoked predominantly anti-Hebbian plasticity. The tone-duration-dependent STDP was strongly correlated with first inter-spike intervals, implicating intrinsic cellular properties as determinants of STDP. This study demonstrates that transcutaneous stimulation with precise auditory-somatosensory timing parameters can non-invasively induce fusiform cell long-term modulation, which could be harnessed in the future to moderate tinnitus-related hyperactivity in DCN.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Unknown 36 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 16%
Student > Master 6 16%
Researcher 5 14%
Other 4 11%
Student > Bachelor 3 8%
Other 5 14%
Unknown 8 22%
Readers by discipline Count As %
Medicine and Dentistry 10 27%
Neuroscience 7 19%
Agricultural and Biological Sciences 5 14%
Engineering 2 5%
Social Sciences 1 3%
Other 3 8%
Unknown 9 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 September 2015.
All research outputs
#13,952,587
of 22,821,814 outputs
Outputs from Frontiers in Systems Neuroscience
#795
of 1,342 outputs
Outputs of similar age
#131,691
of 264,379 outputs
Outputs of similar age from Frontiers in Systems Neuroscience
#18
of 34 outputs
Altmetric has tracked 22,821,814 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,342 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.7. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,379 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.