↓ Skip to main content

Traumatic Brain Injury Upregulates Phosphodiesterase Expression in the Hippocampus

Overview of attention for article published in Frontiers in Systems Neuroscience, February 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
4 X users

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
46 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Traumatic Brain Injury Upregulates Phosphodiesterase Expression in the Hippocampus
Published in
Frontiers in Systems Neuroscience, February 2016
DOI 10.3389/fnsys.2016.00005
Pubmed ID
Authors

Nicole M. Wilson, David J. Titus, Anthony A. Oliva, Concepcion Furones, Coleen M. Atkins

Abstract

Traumatic brain injury (TBI) results in significant impairments in hippocampal synaptic plasticity. A molecule critically involved in hippocampal synaptic plasticity, 3',5'-cyclic adenosine monophosphate, is downregulated in the hippocampus after TBI, but the mechanism that underlies this decrease is unknown. To address this question, we determined whether phosphodiesterase (PDE) expression in the hippocampus is altered by TBI. Young adult male Sprague Dawley rats received sham surgery or moderate parasagittal fluid-percussion brain injury. Animals were analyzed by western blotting for changes in PDE expression levels in the hippocampus. We found that PDE1A levels were significantly increased at 30 min, 1 h and 6 h after TBI. PDE4B2 and 4D2 were also significantly increased at 1, 6, and 24 h after TBI. Additionally, phosphorylation of PDE4A was significantly increased at 6 and 24 h after TBI. No significant changes were observed in levels of PDE1B, 1C, 3A, 8A, or 8B between 30 min to 7 days after TBI. To determine the spatial profile of these increases, we used immunohistochemistry and flow cytometry at 24 h after TBI. PDE1A and phospho-PDE4A localized to neuronal cell bodies. PDE4B2 was expressed in neuronal dendrites, microglia and infiltrating CD11b(+) immune cells. PDE4D was predominantly found in microglia and infiltrating CD11b(+) immune cells. To determine if inhibition of PDE4 would improve hippocampal synaptic plasticity deficits after TBI, we treated hippocampal slices with rolipram, a pan-PDE4 inhibitor. Rolipram partially rescued the depression in basal synaptic transmission and converted a decaying form of long-term potentiation (LTP) into long-lasting LTP. Overall, these results identify several possible PDE targets for reducing hippocampal synaptic plasticity deficits and improving cognitive function acutely after TBI.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 2%
Unknown 45 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 22%
Researcher 7 15%
Student > Bachelor 5 11%
Student > Master 5 11%
Other 4 9%
Other 3 7%
Unknown 12 26%
Readers by discipline Count As %
Neuroscience 13 28%
Medicine and Dentistry 7 15%
Agricultural and Biological Sciences 3 7%
Psychology 3 7%
Biochemistry, Genetics and Molecular Biology 2 4%
Other 4 9%
Unknown 14 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 July 2016.
All research outputs
#14,247,377
of 22,844,985 outputs
Outputs from Frontiers in Systems Neuroscience
#839
of 1,344 outputs
Outputs of similar age
#208,606
of 397,234 outputs
Outputs of similar age from Frontiers in Systems Neuroscience
#25
of 41 outputs
Altmetric has tracked 22,844,985 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,344 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.7. This one is in the 34th percentile – i.e., 34% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 397,234 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 41 others from the same source and published within six weeks on either side of this one. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.