↓ Skip to main content

Altered Mitochondrial Dynamics and TBI Pathophysiology

Overview of attention for article published in Frontiers in Systems Neuroscience, March 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (83rd percentile)
  • High Attention Score compared to outputs of the same age and source (83rd percentile)

Mentioned by

news
1 news outlet
twitter
4 X users

Citations

dimensions_citation
113 Dimensions

Readers on

mendeley
117 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Altered Mitochondrial Dynamics and TBI Pathophysiology
Published in
Frontiers in Systems Neuroscience, March 2016
DOI 10.3389/fnsys.2016.00029
Pubmed ID
Authors

Tara D. Fischer, Michael J. Hylin, Jing Zhao, Anthony N. Moore, M. Neal Waxham, Pramod K. Dash

Abstract

Mitochondrial function is intimately linked to cellular survival, growth, and death. Mitochondria not only generate ATP from oxidative phosphorylation, but also mediate intracellular calcium buffering, generation of reactive oxygen species (ROS), and apoptosis. Electron leakage from the electron transport chain, especially from damaged or depolarized mitochondria, can generate excess free radicals that damage cellular proteins, DNA, and lipids. Furthermore, mitochondrial damage releases pro-apoptotic factors to initiate cell death. Previous studies have reported that traumatic brain injury (TBI) reduces mitochondrial respiration, enhances production of ROS, and triggers apoptotic cell death, suggesting a prominent role of mitochondria in TBI pathophysiology. Mitochondria maintain cellular energy homeostasis and health via balanced processes of fusion and fission, continuously dividing and fusing to form an interconnected network throughout the cell. An imbalance of these processes, particularly an excess of fission, can be detrimental to mitochondrial function, causing decreased respiration, ROS production, and apoptosis. Mitochondrial fission is regulated by the cytosolic GTPase, dynamin-related protein 1 (Drp1), which translocates to the mitochondrial outer membrane (MOM) to initiate fission. Aberrant Drp1 activity has been linked to excessive mitochondrial fission and neurodegeneration. Measurement of Drp1 levels in purified hippocampal mitochondria showed an increase in TBI animals as compared to sham controls. Analysis of cryo-electron micrographs of these mitochondria also showed that TBI caused an initial increase in the length of hippocampal mitochondria at 24 h post-injury, followed by a significant decrease in length at 72 h. Post-TBI administration of Mitochondrial division inhibitor-1 (Mdivi-1), a pharmacological inhibitor of Drp1, prevented this decrease in mitochondria length. Mdivi-1 treatment also reduced the loss of newborn neurons in the hippocampus and improved novel object recognition (NOR) memory and context-specific fear memory. Taken together, our results show that TBI increases mitochondrial fission and that inhibition of fission improves hippocampal-dependent learning and memory, suggesting that strategies to reduce fission may have translational value after injury.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 117 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 117 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 29 25%
Researcher 13 11%
Student > Master 12 10%
Student > Postgraduate 8 7%
Student > Bachelor 7 6%
Other 21 18%
Unknown 27 23%
Readers by discipline Count As %
Neuroscience 27 23%
Agricultural and Biological Sciences 16 14%
Medicine and Dentistry 13 11%
Biochemistry, Genetics and Molecular Biology 11 9%
Pharmacology, Toxicology and Pharmaceutical Science 4 3%
Other 15 13%
Unknown 31 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 April 2016.
All research outputs
#2,826,779
of 22,858,915 outputs
Outputs from Frontiers in Systems Neuroscience
#268
of 1,344 outputs
Outputs of similar age
#47,636
of 300,631 outputs
Outputs of similar age from Frontiers in Systems Neuroscience
#6
of 36 outputs
Altmetric has tracked 22,858,915 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,344 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.7. This one has done well, scoring higher than 79% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 300,631 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 83% of its contemporaries.
We're also able to compare this research output to 36 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 83% of its contemporaries.