↓ Skip to main content

Single and Multiple Change Point Detection in Spike Trains: Comparison of Different CUSUM Methods

Overview of attention for article published in Frontiers in Systems Neuroscience, June 2016
Altmetric Badge

Mentioned by

twitter
3 X users

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Single and Multiple Change Point Detection in Spike Trains: Comparison of Different CUSUM Methods
Published in
Frontiers in Systems Neuroscience, June 2016
DOI 10.3389/fnsys.2016.00051
Pubmed ID
Authors

Lena Koepcke, Go Ashida, Jutta Kretzberg

Abstract

In a natural environment, sensory systems are faced with ever-changing stimuli that can occur, disappear or change their properties at any time. For the animal to react adequately the sensory systems must be able to detect changes in external stimuli based on its neuronal responses. Since the nervous system has no prior knowledge of the stimulus timing, changes in stimulus need to be inferred from the changes in neuronal activity, in particular increase or decrease of the spike rate, its variability, and shifted response latencies. From a mathematical point of view, this problem can be rephrased as detecting changes of statistical properties in a time series. In neuroscience, the CUSUM (cumulative sum) method has been applied to recorded neuronal responses for detecting a single stimulus change. Here, we investigate the applicability of the CUSUM approach for detecting single as well as multiple stimulus changes that induce increases or decreases in neuronal activity. Like the nervous system, our algorithm relies exclusively on previous neuronal population activities, without using knowledge about the timing or number of external stimulus changes. We apply our change point detection methods to experimental data obtained by multi-electrode recordings from turtle retinal ganglion cells, which react to changes in light stimulation with a range of typical neuronal activity patterns. We systematically examine how variations of mathematical assumptions (Poisson, Gaussian, and Gamma distributions) used for the algorithms may affect the detection of an unknown number of stimulus changes in our data and compare these CUSUM methods with the standard Rate Change method. Our results suggest which versions of the CUSUM algorithm could be useful for different types of specific data sets.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 3%
Unknown 35 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 28%
Researcher 7 19%
Student > Master 6 17%
Student > Bachelor 2 6%
Lecturer > Senior Lecturer 1 3%
Other 3 8%
Unknown 7 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 28%
Neuroscience 7 19%
Engineering 2 6%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Biochemistry, Genetics and Molecular Biology 1 3%
Other 6 17%
Unknown 9 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 June 2016.
All research outputs
#15,377,214
of 22,876,619 outputs
Outputs from Frontiers in Systems Neuroscience
#962
of 1,344 outputs
Outputs of similar age
#223,109
of 352,768 outputs
Outputs of similar age from Frontiers in Systems Neuroscience
#19
of 24 outputs
Altmetric has tracked 22,876,619 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,344 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.8. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 352,768 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.