↓ Skip to main content

Information and the Origin of Qualia

Overview of attention for article published in Frontiers in Systems Neuroscience, April 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (88th percentile)
  • High Attention Score compared to outputs of the same age and source (93rd percentile)

Mentioned by

twitter
22 X users
facebook
1 Facebook page
wikipedia
6 Wikipedia pages
reddit
1 Redditor

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
45 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Information and the Origin of Qualia
Published in
Frontiers in Systems Neuroscience, April 2017
DOI 10.3389/fnsys.2017.00022
Pubmed ID
Authors

Roger Orpwood

Abstract

This article argues that qualia are a likely outcome of the processing of information in local cortical networks. It uses an information-based approach and makes a distinction between information structures (the physical embodiment of information in the brain, primarily patterns of action potentials), and information messages (the meaning of those structures to the brain, and the basis of qualia). It develops formal relationships between these two kinds of information, showing how information structures can represent messages, and how information messages can be identified from structures. The article applies this perspective to basic processing in cortical networks or ensembles, showing how networks can transform between the two kinds of information. The article argues that an input pattern of firing is identified by a network as an information message, and that the output pattern of firing generated is a representation of that message. If a network is encouraged to develop an attractor state through attention or other re-entrant processes, then the message identified each time physical information is cycled through the network becomes "representation of the previous message". Using an example of olfactory perception, it is shown how this piggy-backing of messages on top of previous messages could lead to olfactory qualia. The message identified on each pass of information could evolve from inner identity, to inner form, to inner likeness or image. The outcome is an olfactory quale. It is shown that the same outcome could result from information cycled through a hierarchy of networks in a resonant state. The argument for qualia generation is applied to other sensory modalities, showing how, through a process of brain-wide constraint satisfaction, a particular state of consciousness could develop at any given moment. Evidence for some of the key predictions of the theory is presented, using ECoG data and studies of gamma oscillations and attractors, together with an outline of what further evidence is needed to provide support for the theory.

X Demographics

X Demographics

The data shown below were collected from the profiles of 22 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 45 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 45 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 16%
Student > Ph. D. Student 7 16%
Student > Bachelor 6 13%
Student > Doctoral Student 4 9%
Other 3 7%
Other 8 18%
Unknown 10 22%
Readers by discipline Count As %
Psychology 11 24%
Neuroscience 8 18%
Computer Science 2 4%
Business, Management and Accounting 1 2%
Nursing and Health Professions 1 2%
Other 10 22%
Unknown 12 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 18. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 November 2023.
All research outputs
#2,020,665
of 25,383,225 outputs
Outputs from Frontiers in Systems Neuroscience
#164
of 1,406 outputs
Outputs of similar age
#36,746
of 314,223 outputs
Outputs of similar age from Frontiers in Systems Neuroscience
#3
of 29 outputs
Altmetric has tracked 25,383,225 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,406 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.2. This one has done well, scoring higher than 88% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 314,223 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 88% of its contemporaries.
We're also able to compare this research output to 29 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 93% of its contemporaries.