↓ Skip to main content

Dopamine Modulates Serotonin Innervation in the Drosophila Brain

Overview of attention for article published in Frontiers in Systems Neuroscience, October 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (87th percentile)
  • Good Attention Score compared to outputs of the same age and source (79th percentile)

Mentioned by

news
1 news outlet
twitter
14 X users
facebook
1 Facebook page

Readers on

mendeley
95 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Dopamine Modulates Serotonin Innervation in the Drosophila Brain
Published in
Frontiers in Systems Neuroscience, October 2017
DOI 10.3389/fnsys.2017.00076
Pubmed ID
Authors

Janna Niens, Fabienne Reh, Büşra Çoban, Karol Cichewicz, Julia Eckardt, Yi-Ting Liu, Jay Hirsh, Thomas D. Riemensperger

Abstract

Parkinson's disease (PD) results from a progressive degeneration of the dopaminergic nigrostriatal system leading to a decline in movement control, with resting tremor, rigidity and postural instability. Several aspects of PD can be modeled in the fruit fly, Drosophila melanogaster, including α-synuclein-induced degeneration of dopaminergic neurons, or dopamine (DA) loss by genetic elimination of neural DA synthesis. Defective behaviors in this latter model can be ameliorated by feeding the DA precursor L-DOPA, analogous to the treatment paradigm for PD. Secondary complication from L-DOPA treatment in PD patients are associated with ectopic synthesis of DA in serotonin (5-HT)-releasing neurons, leading to DA/5-HT imbalance. Here we examined the neuro-anatomical adaptations resulting from imbalanced DA/5-HT signaling in Drosophila mutants lacking neural DA. We find that, similar to rodent models of PD, lack of DA leads to increased 5-HT levels and arborizations in specific brain regions. Conversely, increased DA levels by L-DOPA feeding leads to reduced connectivity of 5-HT neurons to their target neurons in the mushroom body (MB). The observed alterations of 5-HT neuron plasticity indicate that loss of DA signaling is not solely responsible for the behavioral disorders observed in Drosophila models of PD, but rather a combination of the latter with alterations of 5-HT circuitry.

X Demographics

X Demographics

The data shown below were collected from the profiles of 14 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 95 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 95 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 22 23%
Student > Bachelor 16 17%
Researcher 11 12%
Student > Master 9 9%
Student > Doctoral Student 5 5%
Other 9 9%
Unknown 23 24%
Readers by discipline Count As %
Neuroscience 24 25%
Biochemistry, Genetics and Molecular Biology 17 18%
Agricultural and Biological Sciences 15 16%
Medicine and Dentistry 3 3%
Chemistry 2 2%
Other 9 9%
Unknown 25 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 17. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 March 2023.
All research outputs
#1,912,074
of 23,577,654 outputs
Outputs from Frontiers in Systems Neuroscience
#160
of 1,363 outputs
Outputs of similar age
#39,362
of 327,133 outputs
Outputs of similar age from Frontiers in Systems Neuroscience
#5
of 24 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 91st percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,363 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.9. This one has done well, scoring higher than 88% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,133 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 87% of its contemporaries.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 79% of its contemporaries.