↓ Skip to main content

A Free-Knot Spline Modeling Framework for Piecewise Linear Logistic Regression in Complex Samples with Body Mass Index and Mortality as an Example

Overview of attention for article published in Frontiers in Nutrition, September 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A Free-Knot Spline Modeling Framework for Piecewise Linear Logistic Regression in Complex Samples with Body Mass Index and Mortality as an Example
Published in
Frontiers in Nutrition, September 2014
DOI 10.3389/fnut.2014.00016
Pubmed ID
Authors

Scott W. Keith, David B. Allison

Abstract

This paper details the design, evaluation, and implementation of a framework for detecting and modeling nonlinearity between a binary outcome and a continuous predictor variable adjusted for covariates in complex samples. The framework provides familiar-looking parameterizations of output in terms of linear slope coefficients and odds ratios. Estimation methods focus on maximum likelihood optimization of piecewise linear free-knot splines formulated as B-splines. Correctly specifying the optimal number and positions of the knots improves the model, but is marked by computational intensity and numerical instability. Our inference methods utilize both parametric and nonparametric bootstrapping. Unlike other nonlinear modeling packages, this framework is designed to incorporate multistage survey sample designs common to nationally representative datasets. We illustrate the approach and evaluate its performance in specifying the correct number of knots under various conditions with an example using body mass index (BMI; kg/m(2)) and the complex multi-stage sampling design from the Third National Health and Nutrition Examination Survey to simulate binary mortality outcomes data having realistic nonlinear sample-weighted risk associations with BMI. BMI and mortality data provide a particularly apt example and area of application since BMI is commonly recorded in large health surveys with complex designs, often categorized for modeling, and nonlinearly related to mortality. When complex sample design considerations were ignored, our method was generally similar to or more accurate than two common model selection procedures, Schwarz's Bayesian Information Criterion (BIC) and Akaike's Information Criterion (AIC), in terms of correctly selecting the correct number of knots. Our approach provided accurate knot selections when complex sampling weights were incorporated, while AIC and BIC were not effective under these conditions.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 4%
Unknown 24 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 24%
Other 3 12%
Researcher 3 12%
Professor 3 12%
Professor > Associate Professor 3 12%
Other 3 12%
Unknown 4 16%
Readers by discipline Count As %
Medicine and Dentistry 6 24%
Mathematics 3 12%
Agricultural and Biological Sciences 2 8%
Computer Science 2 8%
Nursing and Health Professions 1 4%
Other 5 20%
Unknown 6 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 January 2017.
All research outputs
#18,379,018
of 22,764,165 outputs
Outputs from Frontiers in Nutrition
#2,943
of 4,442 outputs
Outputs of similar age
#180,407
of 252,543 outputs
Outputs of similar age from Frontiers in Nutrition
#7
of 7 outputs
Altmetric has tracked 22,764,165 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,442 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.7. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 252,543 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 7 others from the same source and published within six weeks on either side of this one.