↓ Skip to main content

A Comparative Review on Microbiota Manipulation: Lessons From Fish, Plants, Livestock, and Human Research

Overview of attention for article published in Frontiers in Nutrition, September 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (90th percentile)
  • Good Attention Score compared to outputs of the same age and source (71st percentile)

Mentioned by

news
1 news outlet
blogs
1 blog
twitter
13 X users
facebook
1 Facebook page

Citations

dimensions_citation
87 Dimensions

Readers on

mendeley
253 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A Comparative Review on Microbiota Manipulation: Lessons From Fish, Plants, Livestock, and Human Research
Published in
Frontiers in Nutrition, September 2018
DOI 10.3389/fnut.2018.00080
Pubmed ID
Authors

Sylvia Brugman, Wakako Ikeda-Ohtsubo, Saskia Braber, Gert Folkerts, Corné M. J. Pieterse, Peter A. H. M. Bakker

Abstract

During recent years the impact of microbial communities on the health of their host (being plants, fish, and terrestrial animals including humans) has received increasing attention. The microbiota provides the host with nutrients, induces host immune development and metabolism, and protects the host against invading pathogens (1-6). Through millions of years of co-evolution bacteria and hosts have developed intimate relationships. Microbial colonization shapes the host immune system that in turn can shape the microbial composition (7-9). However, with the large scale use of antibiotics in agriculture and human medicine over the last decades an increase of diseases associated with so-called dysbiosis has emerged. Dysbiosis refers to either a disturbed microbial composition (outgrowth of possible pathogenic species) or a disturbed interaction between bacteria and the host (10). Instead of using more antibiotics to treat dysbiosis there is a need to develop alternative strategies to combat disturbed microbial control. To this end, we can learn from nature itself. For example, the plant root (or "rhizosphere") microbiome of sugar beet contains several bacterial species that suppress the fungal root pathogen Rhizoctonia solani, an economically important fungal pathogen of this crop (11). Likewise, commensal bacteria present on healthy human skin produce antimicrobial molecules that selectively kill skin pathogen Staphylococcus aureus. Interestingly, patients with atopic dermatitis (inflammation of the skin) lacked antimicrobial peptide secreting commensal skin bacteria (12). In this review, we will give an overview of microbial manipulation in fish, plants, and terrestrial animals including humans to uncover conserved mechanisms and learn how we might restore microbial balance increasing the resilience of the host species.

X Demographics

X Demographics

The data shown below were collected from the profiles of 13 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 253 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 253 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 52 21%
Student > Ph. D. Student 38 15%
Student > Master 32 13%
Student > Bachelor 17 7%
Student > Doctoral Student 16 6%
Other 26 10%
Unknown 72 28%
Readers by discipline Count As %
Agricultural and Biological Sciences 88 35%
Biochemistry, Genetics and Molecular Biology 25 10%
Medicine and Dentistry 12 5%
Veterinary Science and Veterinary Medicine 10 4%
Immunology and Microbiology 8 3%
Other 33 13%
Unknown 77 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 25. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 September 2021.
All research outputs
#1,376,535
of 23,577,654 outputs
Outputs from Frontiers in Nutrition
#447
of 5,198 outputs
Outputs of similar age
#30,633
of 337,040 outputs
Outputs of similar age from Frontiers in Nutrition
#9
of 32 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 94th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 5,198 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.0. This one has done particularly well, scoring higher than 91% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 337,040 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 90% of its contemporaries.
We're also able to compare this research output to 32 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.