↓ Skip to main content

Genomic Instability and Colon Carcinogenesis: From the Perspective of Genes

Overview of attention for article published in Frontiers in oncology, January 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
facebook
1 Facebook page

Readers on

mendeley
139 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genomic Instability and Colon Carcinogenesis: From the Perspective of Genes
Published in
Frontiers in oncology, January 2013
DOI 10.3389/fonc.2013.00130
Pubmed ID
Authors

Chinthalapally V. Rao, Hiroshi Y. Yamada

Abstract

Colon cancer is the second most lethal cancer; approximately 600,000 people die of it annually in the world. Colon carcinogenesis generally follows a slow and stepwise process of accumulation of mutations under the influence of environmental and epigenetic factors. To adopt a personalized (tailored) cancer therapy approach and to improve current strategies for prevention, diagnosis, prognosis, and therapy overall, advanced understanding of molecular events associated with colon carcinogenesis is necessary. A contemporary approach that combines genetics, epigenomics, and signaling pathways has revealed many genetic/genomic alterations associated with colon cancer progression and their relationships to a genomic instability phenotype prevalent in colon cancer. In this review, we describe the relationship between gene mutations associated with colon carcinogenesis and a genomic instability phenotype, and we discuss possible clinical applications of genomic instability studies. Colon carcinogenesis is associated with frequent mutations in several pathways that include phosphatidylinositol 3-kinase, adenomatous polyposis coli, p53 (TP53), F-box and WD repeat domain containing 7, transforming growth factor-β, chromosome cohesion, and K-RAS. These genes frequently mutated in pathways affecting colon cancer were designated colon cancer (CAN) genes. Aberrations in major colon CAN genes have a causal relationship to genomic instability. Conversely, genomic instability itself plays a role in colon carcinogenesis in experimental settings, as demonstrated in transgenic mouse models with high genomic instability. Thus, there is a feedback-type relationship between CAN gene mutations and genomic instability. These genetic/genomic studies have led to emerging efforts to apply the knowledge to colon cancer prognosis and to targeted therapy.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 139 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Malaysia 1 <1%
Germany 1 <1%
Unknown 137 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 35 25%
Student > Master 17 12%
Student > Bachelor 15 11%
Researcher 15 11%
Student > Doctoral Student 7 5%
Other 16 12%
Unknown 34 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 37 27%
Agricultural and Biological Sciences 34 24%
Medicine and Dentistry 19 14%
Engineering 2 1%
Nursing and Health Professions 2 1%
Other 8 6%
Unknown 37 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 May 2013.
All research outputs
#20,653,708
of 25,371,288 outputs
Outputs from Frontiers in oncology
#11,309
of 22,414 outputs
Outputs of similar age
#228,819
of 288,991 outputs
Outputs of similar age from Frontiers in oncology
#181
of 328 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 22,414 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 288,991 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 10th percentile – i.e., 10% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 328 others from the same source and published within six weeks on either side of this one. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.