↓ Skip to main content

Development of a Drosophila Cell-Based Error Correction Assay

Overview of attention for article published in Frontiers in oncology, January 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Development of a Drosophila Cell-Based Error Correction Assay
Published in
Frontiers in oncology, January 2013
DOI 10.3389/fonc.2013.00187
Pubmed ID
Authors

Jeffrey D. Salemi, Philip T. McGilvray, Thomas J. Maresca

Abstract

Accurate transmission of the genome through cell division requires microtubules from opposing spindle poles to interact with protein super-structures called kinetochores that assemble on each sister chromatid. Most kinetochores establish erroneous attachments that are destabilized through a process called error correction. Failure to correct improper kinetochore-microtubule (kt-MT) interactions before anaphase onset results in chromosomal instability (CIN), which has been implicated in tumorigenesis and tumor adaptation. Thus, it is important to characterize the molecular basis of error correction to better comprehend how CIN occurs and how it can be modulated. An error correction assay has been previously developed in cultured mammalian cells in which incorrect kt-MT attachments are created through the induction of monopolar spindle assembly via chemical inhibition of kinesin-5. Error correction is then monitored following inhibitor wash out. Implementing the error correction assay in Drosophila melanogaster S2 cells would be valuable because kt-MT attachments are easily visualized and the cells are highly amenable to RNAi and high-throughput screening. However, Drosophila kinesin-5 (Klp61F) is unaffected by available small molecule inhibitors. To overcome this limitation, we have rendered S2 cells susceptible to kinesin-5 inhibitors by functionally replacing Klp61F with human kinesin-5 (Eg5). Eg5 expression rescued the assembly of monopolar spindles typically caused by Klp61F depletion. Eg5-mediated bipoles collapsed into monopoles due, in part, to kinesin-14 (Ncd) activity when treated with the kinesin-5 inhibitor S-trityl-L-cysteine (STLC). Furthermore, bipolar spindles reassembled and error correction was observed after STLC wash out. Importantly, error correction in Eg5-expressing S2 cells was dependent on the well-established error correction kinase Aurora B. This system provides a powerful new cell-based platform for studying error correction and CIN.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 2 9%
Unknown 21 91%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 30%
Student > Ph. D. Student 6 26%
Student > Master 3 13%
Student > Bachelor 2 9%
Other 1 4%
Other 3 13%
Unknown 1 4%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 52%
Biochemistry, Genetics and Molecular Biology 6 26%
Computer Science 1 4%
Economics, Econometrics and Finance 1 4%
Engineering 1 4%
Other 1 4%
Unknown 1 4%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 July 2013.
All research outputs
#19,944,994
of 25,374,647 outputs
Outputs from Frontiers in oncology
#9,319
of 22,416 outputs
Outputs of similar age
#221,308
of 289,004 outputs
Outputs of similar age from Frontiers in oncology
#142
of 328 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 22,416 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 289,004 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 20th percentile – i.e., 20% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 328 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.