↓ Skip to main content

Increasing Superoxide Production and the Labile Iron Pool in Tumor Cells may Sensitize Them to Extracellular Ascorbate

Overview of attention for article published in Frontiers in oncology, September 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (59th percentile)

Mentioned by

twitter
4 X users
facebook
1 Facebook page

Readers on

mendeley
66 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Increasing Superoxide Production and the Labile Iron Pool in Tumor Cells may Sensitize Them to Extracellular Ascorbate
Published in
Frontiers in oncology, September 2014
DOI 10.3389/fonc.2014.00249
Pubmed ID
Authors

Mark Frederick McCarty, Francisco Contreras

Abstract

Low millimolar concentrations of ascorbate are capable of inflicting lethal damage on a high proportion of cancer cells lines, yet leave non-transformed cell lines unscathed. Extracellular generation of hydrogen peroxide, reflecting reduction of molecular oxygen by ascorbate, has been shown to mediate this effect. Although some cancer cell lines express low catalase activity, this cannot fully explain the selective sensitivity of cancer cells to hydrogen peroxide. Ranzato and colleagues have presented evidence for a plausible new explanation of this sensitivity - a high proportion of cancers, via NADPH oxidase complexes or dysfunctional mitochondria, produce elevated amounts of superoxide. This superoxide, via a transition metal-catalyzed transfer of an electron to the hydrogen peroxide produced by ascorbate, can generate deadly hydroxyl radical (Haber-Weiss reaction). It thus can be predicted that concurrent measures which somewhat selectively boost superoxide production in cancers will enhance their sensitivity to i.v. ascorbate therapy. One way to achieve this is to increase the provision of substrate to cancer mitochondria. Measures which inhibit the constitutive hypoxia-inducible factor-1 (HIF-1) activity in cancers (such as salsalate and mTORC1 inhibitors, or an improvement of tumor oxygenation), or that inhibit the HIF-1-inducible pyruvate dehydrogenase kinase (such as dichloroacetate), can be expected to increase pyruvate oxidation. A ketogenic diet should provide more lipid substrate for tumor mitochondria. The cancer-killing activity of 42°C hyperthermia is to some degree contingent on an increase in oxidative stress, likely of mitochondrial origin; reports that hydrogen peroxide synergizes with hyperthermia in killing cancer cells suggest that hyperthermia and i.v. ascorbate could potentiate each other's efficacy. A concurrent enhancement of tumor oxygenation might improve results by decreasing HIF-1 activity while increasing the interaction of ascorbic acid with oxygen. An increased pool of labile iron in cancer cells may contribute to the selective susceptibility of many cancers to i.v. ascorbate; antagonism of NF-kappaB activity with salicylate, and intravenous iron administration, could be employed to further elevate free iron in cancers.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 66 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
United States 1 2%
Portugal 1 2%
Unknown 63 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 20%
Student > Master 10 15%
Student > Bachelor 8 12%
Professor 5 8%
Other 5 8%
Other 13 20%
Unknown 12 18%
Readers by discipline Count As %
Medicine and Dentistry 17 26%
Agricultural and Biological Sciences 10 15%
Biochemistry, Genetics and Molecular Biology 7 11%
Nursing and Health Professions 4 6%
Chemistry 4 6%
Other 9 14%
Unknown 15 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 September 2017.
All research outputs
#16,063,069
of 25,394,764 outputs
Outputs from Frontiers in oncology
#5,651
of 22,440 outputs
Outputs of similar age
#132,460
of 246,452 outputs
Outputs of similar age from Frontiers in oncology
#31
of 88 outputs
Altmetric has tracked 25,394,764 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 22,440 research outputs from this source. They receive a mean Attention Score of 3.0. This one has gotten more attention than average, scoring higher than 71% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 246,452 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 88 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 59% of its contemporaries.