↓ Skip to main content

Fast Pencil Beam Dose Calculation for Proton Therapy Using a Double-Gaussian Beam Model

Overview of attention for article published in Frontiers in oncology, December 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Fast Pencil Beam Dose Calculation for Proton Therapy Using a Double-Gaussian Beam Model
Published in
Frontiers in oncology, December 2015
DOI 10.3389/fonc.2015.00281
Pubmed ID
Authors

Joakim da Silva, Richard Ansorge, Rajesh Jena

Abstract

The highly conformal dose distributions produced by scanned proton pencil beams (PBs) are more sensitive to motion and anatomical changes than those produced by conventional radiotherapy. The ability to calculate the dose in real-time as it is being delivered would enable, for example, online dose monitoring, and is therefore highly desirable. We have previously described an implementation of a PB algorithm running on graphics processing units (GPUs) intended specifically for online dose calculation. Here, we present an extension to the dose calculation engine employing a double-Gaussian beam model to better account for the low-dose halo. To the best of our knowledge, it is the first such PB algorithm for proton therapy running on a GPU. We employ two different parameterizations for the halo dose, one describing the distribution of secondary particles from nuclear interactions found in the literature and one relying on directly fitting the model to Monte Carlo simulations of PBs in water. Despite the large width of the halo contribution, we show how in either case the second Gaussian can be included while prolonging the calculation of the investigated plans by no more than 16%, or the calculation of the most time-consuming energy layers by about 25%. Furthermore, the calculation time is relatively unaffected by the parameterization used, which suggests that these results should hold also for different systems. Finally, since the implementation is based on an algorithm employed by a commercial treatment planning system, it is expected that with adequate tuning, it should be able to reproduce the halo dose from a general beam line with sufficient accuracy.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 25%
Researcher 8 20%
Other 4 10%
Professor > Associate Professor 3 8%
Student > Master 2 5%
Other 2 5%
Unknown 11 28%
Readers by discipline Count As %
Physics and Astronomy 14 35%
Medicine and Dentistry 4 10%
Engineering 2 5%
Business, Management and Accounting 1 3%
Psychology 1 3%
Other 3 8%
Unknown 15 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 December 2015.
All research outputs
#20,655,488
of 25,373,627 outputs
Outputs from Frontiers in oncology
#11,309
of 22,416 outputs
Outputs of similar age
#290,686
of 394,029 outputs
Outputs of similar age from Frontiers in oncology
#54
of 75 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 22,416 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 394,029 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 75 others from the same source and published within six weeks on either side of this one. This one is in the 4th percentile – i.e., 4% of its contemporaries scored the same or lower than it.