↓ Skip to main content

Radiation-Induced Reprogramming of Pre-Senescent Mammary Epithelial Cells Enriches Putative CD44+/CD24−/low Stem Cell Phenotype

Overview of attention for article published in Frontiers in oncology, June 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (57th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Radiation-Induced Reprogramming of Pre-Senescent Mammary Epithelial Cells Enriches Putative CD44+/CD24−/low Stem Cell Phenotype
Published in
Frontiers in oncology, June 2016
DOI 10.3389/fonc.2016.00138
Pubmed ID
Authors

Xuefeng Gao, Brock J. Sishc, Christopher B. Nelson, Philip Hahnfeldt, Susan M. Bailey, Lynn Hlatky

Abstract

The enrichment of putative CD44(+)/CD24(-/low) breast stem cell populations following exposure to ionizing radiation (IR) has been ascribed to their inherent radioresistance and an elevated frequency of symmetric division during repopulation. However, recent studies demonstrating radiation-induced phenotypic reprogramming (the transition of non-CD44(+)/CD24(-/low) cells into the CD44(+)/CD24(-/low) phenotype) as a potential mechanism of CD44(+)/CD24(-/low) cell enrichment have raised the question of whether a higher survival and increased self-renewal of existing CD44(+)/CD24(-/low) cells or induced reprogramming is an additional mode of enrichment. To investigate this question, we combined a cellular automata model with in vitro experimental data using both MCF-10A non-tumorigenic human mammary epithelial cells and MCF-7 breast cancer cells, with the goal of identifying the mechanistic basis of CD44(+)/CD24(-/low) stem cell enrichment in the context of radiation-induced cellular senescence. Quantitative modeling revealed that incomplete phenotypic reprogramming of pre-senescent non-stem cells (reprogramming whereby the CD44(+)/CD24(-/low) phenotype is conveyed, along with the short-term proliferation capacity of the original cell) could be an additional mode of enriching the CD44(+)/CD24(-/low) subpopulation. Furthermore, stem cell enrichment in MCF-7 cells occurs both at lower doses and earlier time points, and has longer persistence, than that observed in MCF-10A cells, suggesting that phenotypic plasticity appears to be less regulated in breast cancer cells. Taken together, these results suggest that reprogramming of pre-senescent non-stem cells may play a significant role in both cancer and non-tumorigenic mammary epithelial populations following exposure to IR, a finding with important implications for both radiation therapy and radiation carcinogenesis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 4%
Unknown 23 96%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 5 21%
Student > Ph. D. Student 4 17%
Researcher 4 17%
Student > Doctoral Student 2 8%
Student > Master 1 4%
Other 2 8%
Unknown 6 25%
Readers by discipline Count As %
Medicine and Dentistry 8 33%
Agricultural and Biological Sciences 3 13%
Biochemistry, Genetics and Molecular Biology 2 8%
Physics and Astronomy 2 8%
Social Sciences 1 4%
Other 1 4%
Unknown 7 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 June 2016.
All research outputs
#16,046,765
of 25,371,288 outputs
Outputs from Frontiers in oncology
#5,632
of 22,414 outputs
Outputs of similar age
#215,484
of 368,445 outputs
Outputs of similar age from Frontiers in oncology
#29
of 70 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 22,414 research outputs from this source. They receive a mean Attention Score of 3.0. This one has gotten more attention than average, scoring higher than 71% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 368,445 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 70 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 57% of its contemporaries.