↓ Skip to main content

Functional Significance of Aurora Kinases–p53 Protein Family Interactions in Cancer

Overview of attention for article published in Frontiers in oncology, November 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
41 Dimensions

Readers on

mendeley
95 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Functional Significance of Aurora Kinases–p53 Protein Family Interactions in Cancer
Published in
Frontiers in oncology, November 2016
DOI 10.3389/fonc.2016.00247
Pubmed ID
Authors

Kaori Sasai, Warapen Treekitkarnmongkol, Kazuharu Kai, Hiroshi Katayama, Subrata Sen

Abstract

Aurora kinases play critical roles in regulating spindle assembly, chromosome segregation, and cytokinesis to ensure faithful segregation of chromosomes during mitotic cell division cycle. Molecular and cell biological studies have revealed that Aurora kinases, at physiological levels, orchestrate complex sequential cellular processes at distinct subcellular locations through functional interactions with its various substrates. Aberrant expression of Aurora kinases, on the other hand, cause defects in mitotic spindle assembly, checkpoint response activation, and chromosome segregation leading to chromosomal instability. Elevated expression of Aurora kinases correlating with chromosomal instability is frequently detected in human cancers. Recent genomic profiling of about 3000 human cancer tissue specimens to identify various oncogenic signatures in The Cancer Genome Atlas project has reported that recurrent amplification and overexpression of Aurora kinase-A characterize distinct subsets of human tumors across multiple cancer types. Besides the well-characterized canonical pathway interactions of Aurora kinases in regulating assembly of the mitotic apparatus and chromosome segregation, growing evidence also supports the notion that deregulated expression of Aurora kinases in non-canonical pathways drive transformation and genomic instability by antagonizing tumor suppressor and exacerbating oncogenic signaling through direct interactions with critical proteins. Aberrant expression of the Aurora kinases-p53 protein family signaling axes appears to be critical in the abrogation of p53 protein family mediated tumor suppressor pathways frequently deregulated during oncogenic transformation process. Recent findings reveal the existence of feedback regulatory loops in mRNA expression and protein stability of these protein families and their consequences on downstream effectors involved in diverse physiological functions, such as mitotic progression, checkpoint response pathways, as well as self-renewal and pluripotency in embryonic stem cells. While these investigations have focused on the functional consequences of Aurora kinase protein family interactions with wild-type p53 family proteins, those involving Aurora kinases and mutant p53 remain to be elucidated. This article presents a comprehensive review of studies on Aurora kinases-p53 protein family interactions along with a prospective view on the possible functional consequences of Aurora kinase-mutant p53 signaling pathways in tumor cells. Additionally, we also discuss therapeutic implications of these findings in Aurora kinases overexpressing subsets of human tumors.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 95 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 95 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 19 20%
Student > Ph. D. Student 17 18%
Student > Master 9 9%
Student > Bachelor 9 9%
Student > Doctoral Student 3 3%
Other 16 17%
Unknown 22 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 33 35%
Agricultural and Biological Sciences 16 17%
Medicine and Dentistry 4 4%
Pharmacology, Toxicology and Pharmaceutical Science 3 3%
Unspecified 3 3%
Other 11 12%
Unknown 25 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 November 2016.
All research outputs
#22,760,732
of 25,374,917 outputs
Outputs from Frontiers in oncology
#15,918
of 22,416 outputs
Outputs of similar age
#356,035
of 416,157 outputs
Outputs of similar age from Frontiers in oncology
#54
of 60 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 22,416 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 416,157 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 60 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.