↓ Skip to main content

The Oncopig Cancer Model: An Innovative Large Animal Translational Oncology Platform

Overview of attention for article published in Frontiers in oncology, August 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (60th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
95 Dimensions

Readers on

mendeley
145 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Oncopig Cancer Model: An Innovative Large Animal Translational Oncology Platform
Published in
Frontiers in oncology, August 2017
DOI 10.3389/fonc.2017.00190
Pubmed ID
Authors

Kyle M. Schachtschneider, Regina M. Schwind, Jordan Newson, Nickolas Kinachtchouk, Mark Rizko, Nasya Mendoza-Elias, Paul Grippo, Daniel R. Principe, Alex Park, Nana H. Overgaard, Gregers Jungersen, Kelly D. Garcia, Ajay V. Maker, Laurie A. Rund, Howard Ozer, Ron C. Gaba, Lawrence B. Schook

Abstract

Despite an improved understanding of cancer molecular biology, immune landscapes, and advancements in cytotoxic, biologic, and immunologic anti-cancer therapeutics, cancer remains a leading cause of death worldwide. More than 8.2 million deaths were attributed to cancer in 2012, and it is anticipated that cancer incidence will continue to rise, with 19.3 million cases expected by 2025. The development and investigation of new diagnostic modalities and innovative therapeutic tools is critical for reducing the global cancer burden. Toward this end, transitional animal models serve a crucial role in bridging the gap between fundamental diagnostic and therapeutic discoveries and human clinical trials. Such animal models offer insights into all aspects of the basic science-clinical translational cancer research continuum (screening, detection, oncogenesis, tumor biology, immunogenicity, therapeutics, and outcomes). To date, however, cancer research progress has been markedly hampered by lack of a genotypically, anatomically, and physiologically relevant large animal model. Without progressive cancer models, discoveries are hindered and cures are improbable. Herein, we describe a transgenic porcine model-the Oncopig Cancer Model (OCM)-as a next-generation large animal platform for the study of hematologic and solid tumor oncology. With mutations in key tumor suppressor and oncogenes, TP53(R167H) and KRAS(G12D) , the OCM recapitulates transcriptional hallmarks of human disease while also exhibiting clinically relevant histologic and genotypic tumor phenotypes. Moreover, as obesity rates increase across the global population, cancer patients commonly present clinically with multiple comorbid conditions. Due to the effects of these comorbidities on patient management, therapeutic strategies, and clinical outcomes, an ideal animal model should develop cancer on the background of representative comorbid conditions (tumor macro- and microenvironments). As observed in clinical practice, liver cirrhosis frequently precedes development of primary liver cancer or hepatocellular carcinoma. The OCM has the capacity to develop tumors in combination with such relevant comorbidities. Furthermore, studies on the tumor microenvironment demonstrate similarities between OCM and human cancer genomic landscapes. This review highlights the potential of this and other large animal platforms as transitional models to bridge the gap between basic research and clinical practice.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 145 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 145 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 20 14%
Student > Ph. D. Student 19 13%
Other 14 10%
Student > Bachelor 13 9%
Student > Master 8 6%
Other 22 15%
Unknown 49 34%
Readers by discipline Count As %
Medicine and Dentistry 20 14%
Agricultural and Biological Sciences 19 13%
Biochemistry, Genetics and Molecular Biology 16 11%
Veterinary Science and Veterinary Medicine 9 6%
Pharmacology, Toxicology and Pharmaceutical Science 8 6%
Other 20 14%
Unknown 53 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 October 2017.
All research outputs
#15,173,117
of 25,382,440 outputs
Outputs from Frontiers in oncology
#4,551
of 22,428 outputs
Outputs of similar age
#169,197
of 325,032 outputs
Outputs of similar age from Frontiers in oncology
#37
of 93 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 22,428 research outputs from this source. They receive a mean Attention Score of 3.0. This one has done well, scoring higher than 78% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 325,032 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 93 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.