↓ Skip to main content

Domesticating Cancer: An Evolutionary Strategy in the War on Cancer

Overview of attention for article published in Frontiers in oncology, December 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Domesticating Cancer: An Evolutionary Strategy in the War on Cancer
Published in
Frontiers in oncology, December 2017
DOI 10.3389/fonc.2017.00304
Pubmed ID
Authors

Gustav van Niekerk, Theo Nell, Anna-Mart Engelbrecht

Abstract

Since cancer shares the same molecular machinery as the host, most therapeutic interventions that aim to target cancer would inadvertently also adversely affect the host. In addition, cancer continuously evolves, streamlining its host-derived genome for a new single-celled existence. In particular, short-term clinical success observed with most antineoplastic therapies directly relate to the fact that cancer is constantly evolving. However, the clonal evolution of cancer occasionally also render cancer cells uniquely susceptible to therapeutic interventions, as is exemplified by the clinical relevance of synthetic lethality. Synthetic lethality describes a situation where the simultaneous loss of function in two genes results in lethality, but where a loss of function in either single gene is tolerated. This observation suggests that the evolution of cancer, usually seen as a major clinical challenge, may also afford a key opportunity in lowering on-target toxicities accosted with chemotherapy. As an example, by subjecting cancer to specific selection regimes, cancer can in effect be placed on evolutionary trajectories leading to the development of "targetable" phenotypes such as synthetic lethal interactions. However, such a selection regime would have to overcome a range of obstacles such as on-target toxicity and the selection of an evolvable trait. Since the majority of cancer evolution manifests as a loss of function, we suggest that the induction of auxotrophic phenotypes (i.e., where an organism lose the ability to synthesize specific organic compounds required for growth and thus become dependent on it from dietary sources) may represent an attractive therapeutic option. As an example, animals can obtain vitamin C either by de novo synthesis or from their diet. However, since the maintenance of synthetic pathways is costly, such pathways are often lost if no longer necessary, resulting in the organism being auxotrophic toward the dietary compound. Similarly, increasing the maintenance cost of a redundant pathway in cancer cells is likely to select for clones that have lost such a redundant pathway. Inhibition of a pathway, while supporting the activity of a compensating pathway, may thus induce auxotrophism in cancer cells but not in genomic stable host cells.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 19%
Student > Ph. D. Student 3 14%
Student > Doctoral Student 2 10%
Professor 2 10%
Other 2 10%
Other 5 24%
Unknown 3 14%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 43%
Medicine and Dentistry 3 14%
Agricultural and Biological Sciences 2 10%
Nursing and Health Professions 1 5%
Economics, Econometrics and Finance 1 5%
Other 1 5%
Unknown 4 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 December 2017.
All research outputs
#19,951,180
of 25,382,440 outputs
Outputs from Frontiers in oncology
#9,325
of 22,428 outputs
Outputs of similar age
#321,530
of 446,047 outputs
Outputs of similar age from Frontiers in oncology
#44
of 81 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 22,428 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 446,047 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 81 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.