↓ Skip to main content

The role of CaMKII regulation of phospholamban activity in heart disease

Overview of attention for article published in Frontiers in Pharmacology, January 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
148 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The role of CaMKII regulation of phospholamban activity in heart disease
Published in
Frontiers in Pharmacology, January 2014
DOI 10.3389/fphar.2014.00005
Pubmed ID
Authors

Alicia Mattiazzi, Evangelia G. Kranias

Abstract

Phospholamban (PLN) is a phosphoprotein in cardiac sarcoplasmic reticulum (SR) that is a reversible regulator of the Ca(2) (+)-ATPase (SERCA2a) activity and cardiac contractility. Dephosphorylated PLN inhibits SERCA2a and PLN phosphorylation, at either Ser(16) by PKA or Thr(17) by Ca(2) (+)-calmodulin-dependent protein kinase (CaMKII), reverses this inhibition. Through this mechanism, PLN is a key modulator of SR Ca(2) (+) uptake, Ca(2) (+) load, contractility, and relaxation. PLN phosphorylation is also the main determinant of β1-adrenergic responses in the heart. Although phosphorylation of Thr(17) by CaMKII contributes to this effect, its role is subordinate to the PKA-dependent increase in cytosolic Ca(2) (+), necessary to activate CaMKII. Furthermore, the effects of PLN and its phosphorylation on cardiac function are subject to additional regulation by its interacting partners, the anti-apoptotic HAX-1 protein and Gm or the anchoring unit of protein phosphatase 1. Regulation of PLN activity by this multimeric complex becomes even more important in pathological conditions, characterized by aberrant Ca(2) (+)-cycling. In this scenario, CaMKII-dependent PLN phosphorylation has been associated with protective effects in both acidosis and ischemia/reperfusion. However, the beneficial effects of increasing SR Ca(2) (+) uptake through PLN phosphorylation may be lost or even become deleterious, when these occur in association with alterations in SR Ca(2) (+) leak. Moreover, a major characteristic in human and experimental heart failure (HF) is depressed SR Ca(2) (+) uptake, associated with decreased SERCA2a levels and dephosphorylation of PLN, leading to decreased SR Ca(2) (+) load and impaired contractility. Thus, the strategy of altering SERCA2a and/or PLN levels or activity to restore perturbed SR Ca(2) (+) uptake is a potential therapeutic tool for HF treatment. We will review here the role of CaMKII-dependent phosphorylation of PLN at Thr(17) on cardiac function under physiological and pathological conditions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 148 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 <1%
Unknown 147 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 40 27%
Student > Bachelor 18 12%
Student > Doctoral Student 16 11%
Researcher 15 10%
Student > Master 13 9%
Other 21 14%
Unknown 25 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 36 24%
Agricultural and Biological Sciences 30 20%
Medicine and Dentistry 29 20%
Pharmacology, Toxicology and Pharmaceutical Science 6 4%
Computer Science 4 3%
Other 16 11%
Unknown 27 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 May 2014.
All research outputs
#14,772,245
of 22,741,406 outputs
Outputs from Frontiers in Pharmacology
#5,142
of 15,984 outputs
Outputs of similar age
#183,033
of 305,211 outputs
Outputs of similar age from Frontiers in Pharmacology
#18
of 40 outputs
Altmetric has tracked 22,741,406 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 15,984 research outputs from this source. They receive a mean Attention Score of 4.9. This one has gotten more attention than average, scoring higher than 61% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 305,211 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 40 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.