↓ Skip to main content

Adolescent cocaine exposure simplifies orbitofrontal cortical dendritic arbors

Overview of attention for article published in Frontiers in Pharmacology, October 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (57th percentile)

Mentioned by

twitter
2 X users

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Adolescent cocaine exposure simplifies orbitofrontal cortical dendritic arbors
Published in
Frontiers in Pharmacology, October 2014
DOI 10.3389/fphar.2014.00228
Pubmed ID
Authors

Lauren M. DePoy, Riley E. Perszyk, Kelsey S. Zimmermann, Anthony J. Koleske, Shannon L. Gourley

Abstract

Cocaine and amphetamine remodel dendritic spines within discrete cortico-limbic brain structures including the orbitofrontal cortex (oPFC). Whether dendrite structure is similarly affected, and whether pre-existing cellular characteristics influence behavioral vulnerabilities to drugs of abuse, remain unclear. Animal models provide an ideal venue to address these issues because neurobehavioral phenotypes can be defined both before, and following, drug exposure. We exposed mice to cocaine from postnatal days 31-35, corresponding to early adolescence, using a dosing protocol that causes impairments in an instrumental reversal task in adulthood. We then imaged and reconstructed excitatory neurons in deep-layer oPFC. Prior cocaine exposure shortened and simplified arbors, particularly in the basal region. Next, we imaged and reconstructed orbital neurons in a developmental-genetic model of cocaine vulnerability-the p190rhogap+/- mouse. p190RhoGAP is an actin cytoskeleton regulatory protein that stabilizes dendrites and dendritic spines, and p190rhogap+/- mice develop rapid and robust locomotor activation in response to cocaine. Despite this, oPFC dendritic arbors were intact in drug-naïve p190rhogap+/- mice. Together, these findings provide evidence that adolescent cocaine exposure has long-term effects on dendrite structure in the oPFC, and they suggest that cocaine-induced modifications in dendrite structure may contribute to the behavioral effects of cocaine more so than pre-existing structural abnormalities in this cell population.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 4%
South Africa 1 4%
Unknown 22 92%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 33%
Researcher 4 17%
Student > Master 3 13%
Student > Bachelor 1 4%
Professor 1 4%
Other 5 21%
Unknown 2 8%
Readers by discipline Count As %
Psychology 7 29%
Agricultural and Biological Sciences 6 25%
Neuroscience 3 13%
Medicine and Dentistry 2 8%
Environmental Science 1 4%
Other 1 4%
Unknown 4 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 December 2014.
All research outputs
#14,788,263
of 22,768,097 outputs
Outputs from Frontiers in Pharmacology
#5,160
of 16,010 outputs
Outputs of similar age
#143,800
of 260,282 outputs
Outputs of similar age from Frontiers in Pharmacology
#19
of 52 outputs
Altmetric has tracked 22,768,097 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 16,010 research outputs from this source. They receive a mean Attention Score of 4.9. This one has gotten more attention than average, scoring higher than 61% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 260,282 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 52 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 57% of its contemporaries.