↓ Skip to main content

Hormonal status and age differentially affect tolerance to the disruptive effects of delta-9-tetrahydrocannabinol (Δ9-THC) on learning in female rats

Overview of attention for article published in Frontiers in Pharmacology, July 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Hormonal status and age differentially affect tolerance to the disruptive effects of delta-9-tetrahydrocannabinol (Δ9-THC) on learning in female rats
Published in
Frontiers in Pharmacology, July 2015
DOI 10.3389/fphar.2015.00133
Pubmed ID
Authors

Peter J. Winsauer, Catalin M. Filipeanu, Peter F. Weed, Jessie L. Sutton

Abstract

The effects of hormone status and age on the development of tolerance to Δ(9)-THC were assessed in sham-operated (intact) or ovariectomized (OVX) female rats that received either intraperitoneal saline or 5.6 mg/kg of Δ(9)-THC daily from postnatal day (PD) 75-180 (early adulthood onward) or PD 35-140 (adolescence onward). During this time, the four groups for each age (i.e., intact/saline, intact/THC, OVX/saline, and OVX/THC) were trained in a learning and performance procedure and dose-effect curves were established for Δ(9)-THC (0.56-56 mg/kg) and the cannabinoid type-1 receptor (CB1R) antagonist rimonabant (0.32-10 mg/kg). Despite the persistence of small rate-decreasing and error-increasing effects in intact and OVX females from both ages during chronic Δ(9)-THC, all of the Δ(9)-THC groups developed tolerance. However, the magnitude of tolerance, as well as the effect of hormone status, varied with the age at which chronic Δ(9)-THC was initiated. There was no evidence of dependence in any of the groups. Hippocampal protein expression of CB1R, AHA1 (a co-chaperone of CB1R) and HSP90β (a molecular chaperone modulated by AHA-1) was affected more by OVX than chronic Δ(9)-THC; striatal protein expression was not consistently affected by either manipulation. Hippocampal brain-derived neurotrophic factor expression varied with age, hormone status, and chronic treatment. Thus, hormonal status differentially affects the development of tolerance to the disruptive effects of delta-9-tetrahydrocannabinol (Δ(9)-THC) on learning and performance behavior in adolescent, but not adult, female rats. These factors and their interactions also differentially affect cannabinoid signaling proteins in the hippocampus and striatum, and ultimately, neural plasticity.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Unknown 30 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 23%
Student > Master 5 16%
Student > Bachelor 2 6%
Other 2 6%
Professor 1 3%
Other 4 13%
Unknown 10 32%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 5 16%
Agricultural and Biological Sciences 3 10%
Neuroscience 3 10%
Psychology 3 10%
Medicine and Dentistry 2 6%
Other 5 16%
Unknown 10 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 July 2015.
All research outputs
#21,102,198
of 23,749,054 outputs
Outputs from Frontiers in Pharmacology
#11,016
of 17,401 outputs
Outputs of similar age
#221,498
of 264,730 outputs
Outputs of similar age from Frontiers in Pharmacology
#50
of 63 outputs
Altmetric has tracked 23,749,054 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 17,401 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.1. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,730 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 63 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.