↓ Skip to main content

HDL-S1P: cardiovascular functions, disease-associated alterations, and therapeutic applications

Overview of attention for article published in Frontiers in Pharmacology, October 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
82 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
HDL-S1P: cardiovascular functions, disease-associated alterations, and therapeutic applications
Published in
Frontiers in Pharmacology, October 2015
DOI 10.3389/fphar.2015.00243
Pubmed ID
Authors

Bodo Levkau

Abstract

Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid contained in High-density lipoproteins (HDL) and has drawn considerable attention in the lipoprotein field as numerous studies have demonstrated its contribution to several functions inherent to HDL. Some of them are partly and some entirely due to the S1P contained in HDL (HDL-S1P). Despite the presence of over 1000 different lipids in HDL, S1P stands out as it possesses its own cell surface receptors through which it exercises key physiological functions. Most of the S1P in human plasma is associated with HDL, and the amount of HDL-S1P influences the quality and quantity of HDL-dependent functions. The main binding partner of S1P in HDL is apolipoprotein M but others may also exist particularly under conditions of acute S1P elevations. HDL not only exercise functions through their S1P content but have also an impact on genuine S1P signaling by influencing S1P bioactivity and receptor presentation. HDL-S1P content is altered in human diseases such as atherosclerosis, coronary artery disease, myocardial infarction, renal insufficiency and diabetes mellitus. Low HDL-S1P has also been linked to impaired HDL functions associated with these disorders. Although the pathophysiological and molecular reasons for such disease-associated shifts in HDL-S1P are little understood, there have been successful approaches to circumvent their adverse implications by pharmacologically increasing HDL-S1P as means to improve HDL function. This mini-review will cover the current understanding of the contribution of HDL-S1P to physiological HDL function, its alteration in disease and ways for its restoration to correct HDL dysfunction.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 82 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 82 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 21%
Student > Bachelor 16 20%
Student > Master 15 18%
Researcher 8 10%
Student > Doctoral Student 6 7%
Other 12 15%
Unknown 8 10%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 20 24%
Medicine and Dentistry 18 22%
Agricultural and Biological Sciences 10 12%
Pharmacology, Toxicology and Pharmaceutical Science 7 9%
Immunology and Microbiology 4 5%
Other 10 12%
Unknown 13 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 October 2015.
All research outputs
#17,775,656
of 22,830,751 outputs
Outputs from Frontiers in Pharmacology
#7,070
of 16,070 outputs
Outputs of similar age
#190,701
of 283,131 outputs
Outputs of similar age from Frontiers in Pharmacology
#47
of 98 outputs
Altmetric has tracked 22,830,751 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 16,070 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 48th percentile – i.e., 48% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 283,131 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 98 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.