↓ Skip to main content

Entecavir Interacts with Influx Transporters hOAT1, hCNT2, hCNT3, but Not with hOCT2: The Potential for Renal Transporter-Mediated Cytotoxicity and Drug–Drug Interactions

Overview of attention for article published in Frontiers in Pharmacology, January 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
2 X users
f1000
1 research highlight platform

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Entecavir Interacts with Influx Transporters hOAT1, hCNT2, hCNT3, but Not with hOCT2: The Potential for Renal Transporter-Mediated Cytotoxicity and Drug–Drug Interactions
Published in
Frontiers in Pharmacology, January 2016
DOI 10.3389/fphar.2015.00304
Pubmed ID
Authors

Jana Mandíková, Marie Volková, Petr Pávek, Lucie Navrátilová, Lucie Hyršová, Zlatko Janeba, Jan Pavlík, Pavel Bárta, František Trejtnar

Abstract

Entecavir (ETV) is one of the most potent agents for the treatment of the hepatitis B viral infection. The drug is principally eliminated by the kidney. The goal of this study was to investigate the potential of ETV to interact in vitro with the renal SLC transporters hOAT1, hOCT2, hCNT2 and hCNT3. Potential drug-drug interactions of ETV at the renal transporters with antiviral drugs known to be excreted by the kidney (adefovir, tenofovir, cidofovir) as well as transporter-dependent cytotoxicity were also examined. Interactions with the selected transporters along with cytotoxicity were studied in several transiently transfected cellular models using specific substrates and inhibitors. ETV was found to be both a substrate and inhibitor of hOAT1 (IC50 = 175.3 μM), hCNT2 (IC50 = 241.9 μM) and hCNT3 (IC50 = 278.4 μM) transporters, although it interacted with the transporters with relatively low affinities. ETV inhibited the cellular uptake of adefovir, tenofovir, and cidofovir by hOAT1; however, effective inhibition was shown at ETV concentrations exceeding therapeutic levels. In comparison with adefovir, tenofovir, and cidofovir, ETV displayed no transporter-mediated cytotoxicity in cells transfected with hOAT1, hCNT2, and hCNT3. No significant interaction of ETV with hOCT2 was detected. The study demonstrates interactions of ETV with several human renal transporters. For the first time, an interaction of ETV with the hCNTs was proved. We show that the potency of ETV to cause nephrotoxicity and/or clinically significant drug-drug interactions related to the tested transporters is considerably lower than that of adefovir, tenofovir, and cidofovir.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Switzerland 1 5%
Unknown 19 95%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 20%
Researcher 4 20%
Student > Bachelor 3 15%
Student > Ph. D. Student 2 10%
Lecturer 2 10%
Other 3 15%
Unknown 2 10%
Readers by discipline Count As %
Medicine and Dentistry 8 40%
Pharmacology, Toxicology and Pharmaceutical Science 5 25%
Biochemistry, Genetics and Molecular Biology 1 5%
Nursing and Health Professions 1 5%
Chemistry 1 5%
Other 0 0%
Unknown 4 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 July 2016.
All research outputs
#15,327,834
of 25,732,188 outputs
Outputs from Frontiers in Pharmacology
#5,028
of 19,996 outputs
Outputs of similar age
#203,378
of 401,983 outputs
Outputs of similar age from Frontiers in Pharmacology
#25
of 78 outputs
Altmetric has tracked 25,732,188 research outputs across all sources so far. This one is in the 40th percentile – i.e., 40% of other outputs scored the same or lower than it.
So far Altmetric has tracked 19,996 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.3. This one has gotten more attention than average, scoring higher than 74% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 401,983 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 78 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.