↓ Skip to main content

Structural Insights into High Density Lipoprotein: Old Models and New Facts

Overview of attention for article published in Frontiers in Pharmacology, January 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
35 Dimensions

Readers on

mendeley
104 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Structural Insights into High Density Lipoprotein: Old Models and New Facts
Published in
Frontiers in Pharmacology, January 2016
DOI 10.3389/fphar.2015.00318
Pubmed ID
Authors

Valentin Gogonea

Abstract

The physiological link between circulating high density lipoprotein (HDL) levels and cardiovascular disease is well-documented, albeit its intricacies are not well-understood. An improved appreciation of HDL function and overall role in vascular health and disease requires at its foundation a better understanding of the lipoprotein's molecular structure, its formation, and its process of maturation through interactions with various plasma enzymes and cell receptors that intervene along the pathway of reverse cholesterol transport. This review focuses on summarizing recent developments in the field of lipid free apoA-I and HDL structure, with emphasis on new insights revealed by newly published nascent and spherical HDL models constructed by combining low resolution structures obtained from small angle neutron scattering (SANS) with contrast variation and geometrical constraints derived from hydrogen-deuterium exchange (HDX), crosslinking mass spectrometry, electron microscopy, Förster resonance energy transfer, and electron spin resonance. Recently published low resolution structures of nascent and spherical HDL obtained from SANS with contrast variation and isotopic labeling of apolipoprotein A-I (apoA-I) will be critically reviewed and discussed in terms of how they accommodate existing biophysical structural data from alternative approaches. The new low resolution structures revealed and also provided some answers to long standing questions concerning lipid organization and particle maturation of lipoproteins. The review will discuss the merits of newly proposed SANS based all atom models for nascent and spherical HDL, and compare them with accepted models. Finally, naturally occurring and bioengineered mutations in apoA-I, and their impact on HDL phenotype, are reviewed and discuss together with new therapeutics employed for restoring HDL function.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 104 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 104 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 23 22%
Researcher 22 21%
Student > Bachelor 9 9%
Student > Master 7 7%
Student > Doctoral Student 6 6%
Other 12 12%
Unknown 25 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 21 20%
Biochemistry, Genetics and Molecular Biology 20 19%
Medicine and Dentistry 11 11%
Chemistry 7 7%
Pharmacology, Toxicology and Pharmaceutical Science 5 5%
Other 12 12%
Unknown 28 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 January 2016.
All research outputs
#20,300,248
of 22,837,982 outputs
Outputs from Frontiers in Pharmacology
#10,074
of 16,077 outputs
Outputs of similar age
#331,825
of 395,128 outputs
Outputs of similar age from Frontiers in Pharmacology
#48
of 73 outputs
Altmetric has tracked 22,837,982 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 16,077 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 395,128 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 73 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.