↓ Skip to main content

Multitarget Multiscale Simulation for Pharmacological Treatment of Dystonia in Motor Cortex

Overview of attention for article published in Frontiers in Pharmacology, June 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (67th percentile)

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
28 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Multitarget Multiscale Simulation for Pharmacological Treatment of Dystonia in Motor Cortex
Published in
Frontiers in Pharmacology, June 2016
DOI 10.3389/fphar.2016.00157
Pubmed ID
Authors

Samuel A. Neymotin, Salvador Dura-Bernal, Peter Lakatos, Terence D. Sanger, William W. Lytton

Abstract

A large number of physiomic pathologies can produce hyperexcitability in cortex. Depending on severity, cortical hyperexcitability may manifest clinically as a hyperkinetic movement disorder or as epilpesy. We focus here on dystonia, a movement disorder that produces involuntary muscle contractions and involves pathology in multiple brain areas including basal ganglia, thalamus, cerebellum, and sensory and motor cortices. Most research in dystonia has focused on basal ganglia, while much pharmacological treatment is provided directly at muscles to prevent contraction. Motor cortex is another potential target for therapy that exhibits pathological dynamics in dystonia, including heightened activity and altered beta oscillations. We developed a multiscale model of primary motor cortex, ranging from molecular, up to cellular, and network levels, containing 1715 compartmental model neurons with multiple ion channels and intracellular molecular dynamics. We wired the model based on electrophysiological data obtained from mouse motor cortex circuit mapping experiments. We used the model to reproduce patterns of heightened activity seen in dystonia by applying independent random variations in parameters to identify pathological parameter sets. These models demonstrated degeneracy, meaning that there were many ways of obtaining the pathological syndrome. There was no single parameter alteration which would consistently distinguish pathological from physiological dynamics. At higher dimensions in parameter space, we were able to use support vector machines to distinguish the two patterns in different regions of space and thereby trace multitarget routes from dystonic to physiological dynamics. These results suggest the use of in silico models for discovery of multitarget drug cocktails.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 25%
Student > Ph. D. Student 5 18%
Student > Master 3 11%
Professor 3 11%
Student > Doctoral Student 2 7%
Other 4 14%
Unknown 4 14%
Readers by discipline Count As %
Neuroscience 4 14%
Agricultural and Biological Sciences 3 11%
Engineering 3 11%
Medicine and Dentistry 3 11%
Biochemistry, Genetics and Molecular Biology 2 7%
Other 5 18%
Unknown 8 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 August 2016.
All research outputs
#14,266,546
of 22,877,793 outputs
Outputs from Frontiers in Pharmacology
#4,703
of 16,169 outputs
Outputs of similar age
#201,162
of 352,714 outputs
Outputs of similar age from Frontiers in Pharmacology
#38
of 117 outputs
Altmetric has tracked 22,877,793 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 16,169 research outputs from this source. They receive a mean Attention Score of 4.9. This one has gotten more attention than average, scoring higher than 68% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 352,714 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 117 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.