↓ Skip to main content

Toll-Like Receptor 4 Modulates Small Intestine Neuromuscular Function through Nitrergic and Purinergic Pathways

Overview of attention for article published in Frontiers in Pharmacology, January 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (65th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
44 Dimensions

Readers on

mendeley
61 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Toll-Like Receptor 4 Modulates Small Intestine Neuromuscular Function through Nitrergic and Purinergic Pathways
Published in
Frontiers in Pharmacology, January 2017
DOI 10.3389/fphar.2017.00350
Pubmed ID
Authors

Valentina Caputi, Ilaria Marsilio, Silvia Cerantola, Mona Roozfarakh, Isabella Lante, Francesca Galuppini, Massimo Rugge, Eleonora Napoli, Cecilia Giulivi, Genny Orso, Maria Cecilia Giron

Abstract

Objective: Toll-like receptors (TLRs) play a pivotal role in the homeostatic microflora-host crosstalk. TLR4-mediated modulation of both motility and enteric neuronal survival has been reported mainly for colon with limited information on the role of TLR4 in tuning structural and functional integrity of enteric nervous system (ENS) and in controlling small bowel motility. Methods: Male TLR4 knockout (TLR4(-/-), 9 ± 1 weeks old) and sex- and age-matched wild-type (WT) C57BL/6J mice were used for the experiments. Alterations in ENS morphology and neurochemical code were assessed by immunohistochemistry whereas neuromuscular function was evaluated by isometric mechanical activity of ileal preparations following receptor and non-receptor-mediated stimuli and by gastrointestinal transit. Results: The absence of TLR4 induced gliosis and reduced the total number of neurons, mainly nNOS(+) neurons, in ileal myenteric plexus. Furthermore, a lower cholinergic excitatory response with an increased inhibitory neurotransmission was found together with a delayed gastrointestinal transit. These changes were dependent on increased ileal non-adrenergic non-cholinergic (NANC) relaxations mediated by a complex neuronal-glia signaling constituted by P2X7 and P2Y1 receptors, and NO produced by nNOS and iNOS. Conclusion: We provide novel evidence that TLR4 signaling is involved in the fine-tuning of P2 receptors controlling ileal contractility, ENS cell distribution, and inhibitory NANC neurotransmission via the combined action of NO and adenosine-5'-triphosphate (ATP). For the first time, this study implicates TLR4 at regulating the crosstalk between glia and neurons in small intestine and helps to define its role in gastrointestinal motor abnormalities during dysbiosis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 61 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 61 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 20%
Student > Master 9 15%
Researcher 9 15%
Student > Bachelor 7 11%
Other 2 3%
Other 5 8%
Unknown 17 28%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 9 15%
Agricultural and Biological Sciences 7 11%
Immunology and Microbiology 6 10%
Medicine and Dentistry 6 10%
Biochemistry, Genetics and Molecular Biology 4 7%
Other 7 11%
Unknown 22 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 August 2017.
All research outputs
#15,097,241
of 25,382,440 outputs
Outputs from Frontiers in Pharmacology
#4,958
of 19,724 outputs
Outputs of similar age
#223,720
of 421,709 outputs
Outputs of similar age from Frontiers in Pharmacology
#59
of 171 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 40th percentile – i.e., 40% of other outputs scored the same or lower than it.
So far Altmetric has tracked 19,724 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.3. This one has gotten more attention than average, scoring higher than 74% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 421,709 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 171 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.