↓ Skip to main content

The Significance of the Sulfatase Pathway for Local Estrogen Formation in Endometrial Cancer

Overview of attention for article published in Frontiers in Pharmacology, June 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Significance of the Sulfatase Pathway for Local Estrogen Formation in Endometrial Cancer
Published in
Frontiers in Pharmacology, June 2017
DOI 10.3389/fphar.2017.00368
Pubmed ID
Authors

Maša Sinreih, Tamara Knific, Maja Anko, Neli Hevir, Katja Vouk, Aleš Jerin, Snježana Frković Grazio, Tea Lanišnik Rižner

Abstract

Endometrial cancer (EC) is the most common estrogen-dependent gynecological malignancy in the developed World. To investigate the local formation of estradiol (E2), we first measured the concentrations of the steroid precursor androstenedione (A-dione) and the most potent estrogen, E2, and we evaluated the metabolism of A-dione, estrone-sulfate (E1-S), and estrone (E1) in cancerous and adjacent control endometrium. Furthermore, we studied expression of the key genes for estradiol formation via the aromatase and sulfatase pathways. A-dione and E2 were detected in cancerous and adjacent control endometrium. In cancerous endometrium, A-dione was metabolized to testosterone, and no E2 was formed. Both, E1-S and E1 were metabolized to E2, with increased levels of E2 seen in cancerous tissue. There was no significant difference in expression of the key genes of the aromatase (CYP19A1) and the sulfatase (STS, HSD17B1, HSD17B2) pathways in cancerous endometrium compared to adjacent control tissue. The mRNA levels of CYP19A1 and HSD17B1 were low, and HSD17B14, which promotes inactivation of E2, was significantly down-regulated in cancerous endometrium, especially in patients with lymphovascular invasion. At the protein level, there were no differences in the levels of STS and HSD17B2 between cancerous and adjacent control tissue by Western blotting, and immunohistochemistry revealed intense staining for STS and HSD17B2, and weak staining for SULT1E1 and HSD17B1 in cancerous tissue. Our data demonstrate that in cancerous endometrium, E2 is formed from E1-S via the sulfatase pathway, and not from A-dione via the aromatase pathway.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 18%
Other 2 12%
Student > Bachelor 2 12%
Student > Ph. D. Student 1 6%
Researcher 1 6%
Other 1 6%
Unknown 7 41%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 18%
Agricultural and Biological Sciences 2 12%
Veterinary Science and Veterinary Medicine 1 6%
Neuroscience 1 6%
Chemistry 1 6%
Other 0 0%
Unknown 9 53%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 June 2017.
All research outputs
#20,429,992
of 22,982,639 outputs
Outputs from Frontiers in Pharmacology
#10,169
of 16,263 outputs
Outputs of similar age
#275,504
of 316,289 outputs
Outputs of similar age from Frontiers in Pharmacology
#169
of 256 outputs
Altmetric has tracked 22,982,639 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 16,263 research outputs from this source. They receive a mean Attention Score of 5.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,289 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 256 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.