↓ Skip to main content

Rosmarinic Acid Protects against Inflammation and Cardiomyocyte Apoptosis during Myocardial Ischemia/Reperfusion Injury by Activating Peroxisome Proliferator-Activated Receptor Gamma

Overview of attention for article published in Frontiers in Pharmacology, July 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
55 Dimensions

Readers on

mendeley
54 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Rosmarinic Acid Protects against Inflammation and Cardiomyocyte Apoptosis during Myocardial Ischemia/Reperfusion Injury by Activating Peroxisome Proliferator-Activated Receptor Gamma
Published in
Frontiers in Pharmacology, July 2017
DOI 10.3389/fphar.2017.00456
Pubmed ID
Authors

Jichun Han, Dong Wang, Lei Ye, Peng Li, Wenjin Hao, Xiaoyu Chen, Jun Ma, Bo Wang, Jing Shang, Defang Li, Qiusheng Zheng

Abstract

The cardiac ischemia-reperfusion (I/R) injury greatly influences the therapeutic effect and remains an urgent challenge in clinical therapy. Polypharmacology opens a new therapeutic opportunity to design drugs with a specific target for improving the efficacy. In this study, we first forecasted that Rosmarinic acid (RosA) could be used for the treatment of cardiovascular disease using text mining, chemometric and chemogenomic methods. Consistent with the effect of the positive drug (pioglitazone, PIO), we subsequently validated that RosA pretreatment could restore the decreased cardiac hemodynamic parameters (LVDP, ± dp/dtmin, ± dp/dtmax and CF), decreased the infarct size and the cardiomyocyte apoptosis in a rat model of cardiac I/R injury. Furthermore, RosA pre-treatment inhibited the levels of inflammatory cytokines (IL-6, TNF-α and CRP), up-regulated PPARγ expression and down-regulated NF-κB expression in myocardial tissue isolated from the rat model of I/R-induced myocardial injury. In addition, the effects of RosA were reversed by co-treatment with PPAR-γ inhibitor GW9662 and T0070907, respectively. These data suggest that RosA attenuates cardiac injury through activating PPARγ and down-regulating NF-κB-mediated signaling pathway, which inhibiting inflammation and cardiomyocyte apoptosis in a rat model of cardiac I/R injury.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 54 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 54 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 15%
Student > Bachelor 8 15%
Student > Master 6 11%
Student > Doctoral Student 4 7%
Lecturer 2 4%
Other 6 11%
Unknown 20 37%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 13%
Pharmacology, Toxicology and Pharmaceutical Science 5 9%
Computer Science 4 7%
Medicine and Dentistry 4 7%
Chemistry 4 7%
Other 11 20%
Unknown 19 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 July 2017.
All research outputs
#20,434,884
of 22,988,380 outputs
Outputs from Frontiers in Pharmacology
#10,174
of 16,276 outputs
Outputs of similar age
#272,460
of 312,555 outputs
Outputs of similar age from Frontiers in Pharmacology
#167
of 261 outputs
Altmetric has tracked 22,988,380 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 16,276 research outputs from this source. They receive a mean Attention Score of 5.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 312,555 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 261 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.