↓ Skip to main content

Acacetin from Traditionally Used Saussurea involucrata Kar. et Kir. Suppressed Adipogenesis in 3T3-L1 Adipocytes and Attenuated Lipid Accumulation in Obese Mice

Overview of attention for article published in Frontiers in Pharmacology, August 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (71st percentile)

Mentioned by

twitter
3 X users

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Acacetin from Traditionally Used Saussurea involucrata Kar. et Kir. Suppressed Adipogenesis in 3T3-L1 Adipocytes and Attenuated Lipid Accumulation in Obese Mice
Published in
Frontiers in Pharmacology, August 2017
DOI 10.3389/fphar.2017.00589
Pubmed ID
Authors

Chian-Jiun Liou, Shu-Ju Wu, Li-Chen Chen, Kuo-Wei Yeh, Chih-Ying Chen, Wen-Chung Huang

Abstract

Acacetin, a flavone that can be isolated from the Saussurea involucrata plant, has anti-tumor and anti-inflammatory properties that ameliorate airway hyperresponsiveness in asthmatic mice. This study investigated whether acacetin has anti-adipogenic effects in 3T3-L1 adipocytes and whether it regulates the inflammatory response in adipocytes and macrophages. It also investigated whether acacetin ameliorates lipid accumulation in high-fat diet- (HFD) induced obese mice. Differentiated 3T3-L1 cells were treated with acacetin. The glycerol levels in the culture medium were measured, and the expression of proteins and genes involved in adipogenesis and lipolysis were assayed by Western blot and real-time PCR, respectively. Inflammatory cytokine signaling pathway activity was assessed in macrophages that were treated with acacetin and cultured with differentiated medium from 3T3-L1 cells. Intraperitoneal injections of acacetin were administered to HFD-induced obese mice twice a week for 10 weeks. Acacetin significantly increased the levels of glycerol in the culture medium and significantly inhibited lipid accumulation in adipocytes. Acacetin reduced the expression of adipogenesis-related transcription factors, including the expression of the CCAAT/enhancer-binding protein; it also increased sirtuin 1 expression and AMPK phosphorylation in adipocytes. In macrophages cultured with differentiated media from 3T3-L1 adipocytes, acacetin reduced the levels of inflammatory mediators and the activity of the mitogen-activated protein kinase and NF-κB pathways. In obese mice, acacetin reduced both body weight and visceral adipose tissue weight. These results demonstrate that acacetin inhibited adipogenesis in adipocytes and in obese mice. Acacetin also reduced the inflammatory response of macrophages that were stimulated with differentiated media from 3T3-L1 cells.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 21%
Student > Master 3 16%
Unspecified 1 5%
Student > Doctoral Student 1 5%
Researcher 1 5%
Other 0 0%
Unknown 9 47%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 16%
Biochemistry, Genetics and Molecular Biology 3 16%
Medicine and Dentistry 2 11%
Chemistry 2 11%
Unspecified 1 5%
Other 0 0%
Unknown 8 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 September 2017.
All research outputs
#14,640,751
of 23,900,102 outputs
Outputs from Frontiers in Pharmacology
#4,699
of 17,562 outputs
Outputs of similar age
#171,849
of 318,323 outputs
Outputs of similar age from Frontiers in Pharmacology
#72
of 263 outputs
Altmetric has tracked 23,900,102 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 17,562 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.1. This one has gotten more attention than average, scoring higher than 71% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 318,323 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 263 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.