↓ Skip to main content

GYY4137, an H2S Slow-Releasing Donor, Prevents Nitrative Stress and α-Synuclein Nitration in an MPTP Mouse Model of Parkinson’s Disease

Overview of attention for article published in Frontiers in Pharmacology, October 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
GYY4137, an H2S Slow-Releasing Donor, Prevents Nitrative Stress and α-Synuclein Nitration in an MPTP Mouse Model of Parkinson’s Disease
Published in
Frontiers in Pharmacology, October 2017
DOI 10.3389/fphar.2017.00741
Pubmed ID
Authors

Xiaoou Hou, Yuqing Yuan, Yulan Sheng, Baoshi Yuan, Yali Wang, Jiyue Zheng, Chun-Feng Liu, Xiaohu Zhang, Li-Fang Hu

Abstract

The neuromodulator hydrogen sulfide (H2S) was shown to exert neuroprotection in different models of Parkinson's disease (PD) via its anti-inflammatory and anti-apoptotic properties. In this study, we evaluated the effect of an H2S slow-releasing compound GYY4137 (GYY) on a mouse PD model induced by acute injection with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). GYY was intraperitoneally (i.p.) injected once daily into male C57BL/6J mice 3 days before and 2 weeks after MPTP (14 mg/kg, four times at 2-h intervals, i.p.) administration. Saline was given as a control. Behavioral tests (rotarod, balance beam, and grid walking) showed that 50 mg/kg GYY significantly ameliorated MPTP-caused motor impairments. At lower doses (12.5 and 25 mg/kg) GYY exhibited a less obvious effect. Consistent with this, immunohistochemistry and western blot analysis demonstrated that 50 mg/kg GYY attenuated the loss of tyrosine hydroxylase (TH) positive neurons in the substantia nigra and the decrease of TH expression in the striatum of MPTP-treated mice. Moreover, at this regimen GYY relieved the nitrative stress, as indicated by the decreases in nitric oxide (NO) generation and neuronal NO synthase (nNOS) upregulation elicited by MPTP in the striatum. The suppression of GYY on nNOS expression was verified in vitro, and the results further revealed that Akt activation may participate in the inhibition by GYY on nNOS upregulation. More important, GYY reduced the nitrated modification of α-synuclein, a PD-related protein, in MPTP-induced mice. Overall, our findings suggest that GYY attenuated dopaminergic neuron degeneration and reduced α-synuclein nitration in the midbrain, thus exerting neuroprotection in MPTP-induced mouse model of PD.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 36 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 6 17%
Researcher 5 14%
Student > Ph. D. Student 5 14%
Student > Master 3 8%
Other 2 6%
Other 3 8%
Unknown 12 33%
Readers by discipline Count As %
Neuroscience 6 17%
Pharmacology, Toxicology and Pharmaceutical Science 3 8%
Nursing and Health Professions 3 8%
Biochemistry, Genetics and Molecular Biology 3 8%
Agricultural and Biological Sciences 3 8%
Other 2 6%
Unknown 16 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 October 2017.
All research outputs
#17,919,066
of 23,007,053 outputs
Outputs from Frontiers in Pharmacology
#7,188
of 16,313 outputs
Outputs of similar age
#235,061
of 328,606 outputs
Outputs of similar age from Frontiers in Pharmacology
#117
of 272 outputs
Altmetric has tracked 23,007,053 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 16,313 research outputs from this source. They receive a mean Attention Score of 5.0. This one is in the 48th percentile – i.e., 48% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,606 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 272 others from the same source and published within six weeks on either side of this one. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.