↓ Skip to main content

LASSBio-897 Reduces Lung Injury Induced by Silica Particles in Mice: Potential Interaction with the A2A Receptor

Overview of attention for article published in Frontiers in Pharmacology, October 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
LASSBio-897 Reduces Lung Injury Induced by Silica Particles in Mice: Potential Interaction with the A2A Receptor
Published in
Frontiers in Pharmacology, October 2017
DOI 10.3389/fphar.2017.00778
Pubmed ID
Authors

Vinicius F. Carvalho, Tatiana P. T. Ferreira, Ana C. S. de Arantes, François Noël, Roberta Tesch, Carlos M. R. Sant’Anna, Eliezer J. L. Barreiro, Carlos A. M. Fraga, Patrícia M. Rodrigues e Silva, Marco A. Martins

Abstract

Silicosis is a lethal fibro-granulomatous pulmonary disease highly prevalent in developing countries, for which no proper therapy is available. Among a small series of N-acylhydrazones, the safrole-derived compound LASSBio-897 (3-thienylidene-3, 4-methylenedioxybenzoylhydrazide) raised interest due to its ability to bind to the adenosine A2A receptor. Here, we evaluated the anti-inflammatory and anti-fibrotic potential of LASSBio-897, exploring translation to a mouse model of silicosis and the A2A receptor as a site of action. Pulmonary mechanics, inflammatory, and fibrotic changes were assessed 28 days after intranasal instillation of silica particles in Swiss-Webster mice. Glosensor cAMP HEK293G cells, CHO cells stably expressing human adenosine receptors and ligand binding assay were used to evaluate the pharmacological properties of LASSBio-897 in vitro. Molecular docking studies of LASSBio-897 were performed using the genetic algorithm software GOLD 5.2. We found that the interventional treatment with the A2A receptor agonist CGS 21680 reversed silica particle-induced airway hyper-reactivity as revealed by increased responses of airway resistance and lung elastance following aerosolized methacholine. LASSBio-897 (2 and 5 mg/kg, oral) similarly reversed pivotal lung pathological features of silicosis in this model, reducing levels of airway resistance and lung elastance, granuloma formation and collagen deposition. In competition assays, LASSBio-897 decreased the binding of the selective A2A receptor agonist [(3)H]-CGS21680 (IC50 = 9.3 μM). LASSBio-897 (50 μM) induced modest cAMP production in HEK293G cells, but it clearly synergized the cAMP production by adenosine in a mechanism sensitive to the A2A antagonist SCH 58261. This synergism was also seen in CHO cells expressing the A2A, but not those expressing A2B, A1 or A3 receptors. Based on the evidence that LASSBio-897 binds to A2A receptor, molecular docking studies were performed using the A2A receptor crystal structure and revealed possible binding modes of LASSBio-897 at the orthosteric and allosteric sites. These findings highlight LASSBio-897 as a lead compound in drug development for silicosis, emphasizing the role of the A2A receptor as its putative site of action.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 24%
Professor 4 24%
Student > Doctoral Student 3 18%
Student > Bachelor 1 6%
Student > Master 1 6%
Other 1 6%
Unknown 3 18%
Readers by discipline Count As %
Chemistry 3 18%
Pharmacology, Toxicology and Pharmaceutical Science 2 12%
Biochemistry, Genetics and Molecular Biology 2 12%
Agricultural and Biological Sciences 2 12%
Nursing and Health Professions 1 6%
Other 2 12%
Unknown 5 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 November 2017.
All research outputs
#20,451,228
of 23,007,053 outputs
Outputs from Frontiers in Pharmacology
#10,212
of 16,313 outputs
Outputs of similar age
#286,637
of 328,927 outputs
Outputs of similar age from Frontiers in Pharmacology
#172
of 273 outputs
Altmetric has tracked 23,007,053 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 16,313 research outputs from this source. They receive a mean Attention Score of 5.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,927 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 273 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.