↓ Skip to main content

The Metabotropic Purinergic P2Y Receptor Family as Novel Drug Target in Epilepsy

Overview of attention for article published in Frontiers in Pharmacology, March 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (51st percentile)
  • Good Attention Score compared to outputs of the same age and source (74th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
35 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Metabotropic Purinergic P2Y Receptor Family as Novel Drug Target in Epilepsy
Published in
Frontiers in Pharmacology, March 2018
DOI 10.3389/fphar.2018.00193
Pubmed ID
Authors

Mariana Alves, Edward Beamer, Tobias Engel

Abstract

Epilepsy encompasses a heterogeneous group of neurological syndromes which are characterized by recurrent seizures affecting over 60 million people worldwide. Current anti-epileptic drugs (AEDs) are mainly designed to target ion channels and/or GABA or glutamate receptors. Despite recent advances in drug development, however, pharmacoresistance in epilepsy remains as high as 30%, suggesting the need for the development of new AEDs with a non-classical mechanism of action. Neuroinflammation is increasingly recognized as one of the key players in seizure generation and in the maintenance of the epileptic phenotype. Consequently, targeting signaling molecules involved in inflammatory processes may represent new avenues to improve treatment in epilepsy. Nucleotides such as adenosine-5'-triphosphate (ATP) and uridine-5'-triphosphate (UTP) are released in the brain into the extracellular space during pathological conditions such as increased neuronal firing or cell death. Once released, these nucleotides bind to and activate specific purinergic receptors termed P2 receptors where they mediate the release of gliotransmitters and drive neuronal hyperexcitation and neuroinflammatory processes. This includes the fast acting ionotropic P2X channels and slower-acting G-protein-coupled P2Y receptors. While the expression and function of P2X receptors has been well-established in experimental models of epilepsy, emerging evidence is now also suggesting a prominent role for the P2Y receptor subfamily in seizure generation and the maintenance of epilepsy. In this review we discuss data supporting a role for the P2Y receptor family in epilepsy and the most recent finding demonstrating their involvement during seizure-induced pathology and in epilepsy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 7 20%
Student > Ph. D. Student 6 17%
Student > Bachelor 6 17%
Professor 2 6%
Researcher 2 6%
Other 5 14%
Unknown 7 20%
Readers by discipline Count As %
Neuroscience 7 20%
Biochemistry, Genetics and Molecular Biology 4 11%
Medicine and Dentistry 4 11%
Pharmacology, Toxicology and Pharmaceutical Science 3 9%
Social Sciences 2 6%
Other 9 26%
Unknown 6 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 June 2018.
All research outputs
#13,006,712
of 23,026,672 outputs
Outputs from Frontiers in Pharmacology
#3,609
of 16,337 outputs
Outputs of similar age
#160,439
of 332,619 outputs
Outputs of similar age from Frontiers in Pharmacology
#92
of 368 outputs
Altmetric has tracked 23,026,672 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 16,337 research outputs from this source. They receive a mean Attention Score of 5.0. This one has done well, scoring higher than 77% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,619 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.
We're also able to compare this research output to 368 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.